Installed
User
Program

SH20-6168-1

Pascal/VS
Language Reference Manual

Program Number: 5796-PNQ

Pascal/VS is a Pascal compiler operating in MVS and
VM/CMS. Originally designed as a high level program-
ming language to teach computer programming by

N. Wirth (circa 1968), Pascal has emerged as an
influential and well accepted user language in today’s
data processing environment. Pascal provides the user
with the ability to produce very reliable code by perfor-
ming many error detection checks automatically.

The compiler adheres to the ¢urrently proposed ISO
standard and includes many important extensions.

The language extensions include: separate compilation,
dynamic character strings and extended I/O capabilities.
The implementation features include: fast compilation,
optimization and a symbolic terminal oriented debugger
that allows the user to debug a program quickly and
efficiently.

This manual describes the implementation of the lan-
guage by this compiler, and is intended as a reference
guide for the Pascal programmer,

PROGRAM SERVICES

Central Service will be provided until otherwise notified. Users will be given a minimum of six months
notice prior to the discontinuance of Central Service.

During the Central Service period, IBM through the program sponsor(s) will, without additional charge,
respond to an error in the current unaltered release of the program by issuing known error correction
information to the customer reporting the problem and/or issuing corrected code or notice of avail-
ability of corrected code. However, IBM does not guarantee service results or represent or warrant that
all errors will be corrected.

Any on-site program service or assistance will be provided at a charge.
WARRANTY

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN ‘AS IS’ BASIS WITHOUT WARRANTY
OF ANY KIND EITHER EXPRESS OR IMPLIED.

Central Service Location: IBM Corporation
555 Bailey Avenue
P.O. Box 50020
San Jose, CA 95150
Attention: J. David Pickens
Telephone: (408) 4634394
Tieline: 8-543-4394

IBM Corporation

- DPD, Western Region
3424 Wilshire Boulevard
Los Angeles, CA 90010
Attention: Mr. Keith J. Warltier
Telephone: (213) 736-4645
Tieline: 8-285-4645

Second Edition (April 1981)

This is the second edition of SH20-6162, a publication that applies to release 2.0
of the Pascal/VS Compiler IUP Program Number 5796-PNQ).

References in this publication to IBM products, programs, or services do not imply that
1BM intends to make these available outside the United States.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers’ comments has been praovided at the back of this publication, If
this form has been removed, address comments to: The Central Service Location.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981

PREFACE

This document is the reference manual to the Pascal/VS programming language. The
Pascal/VS Programmer's Guide, SH20-6162, is also available from IBM to help urite
programs in Pascal/Vs.

It is assumed that vou are already familiar with Pascal and programming in a high
level programming language. There are many text books available on Pascal; the fol-
lowing list of books was taken from the Pascal User's Group Pascal News, December
1978 NUMBER 13 and September 1979 NUMBER 15. You may wish to check later editions of
Pascal News and vour library for more recent books.

. The Design of Well-Structured and Correct Proarams by S. Alagic and M.A. Arbib,
Springer-Verlag, New York, 1978, 292 pp.

. Microcomputer Problem Solving by K.L. Bowles, Springer-Verlag, New York, 1977,
563 pp.

. A Structured Programming Approach to Data by D. Coleman, MacMillan Press Ltd,
Londsn, 1978, 222 pp.

. A Primer on Pascal by R.W. Conway, D. Gries and E.C. Zimmerman, Winthrop Pub-
lishers Inc., Cambridge Mass., 1976, 433 pp.

U PASCAL: An Introduction to Methodical Programming by W. Findlay and D. Watt,
Computer Science Press, 1978, 306 pp.; UK Edition by Pitman International Text,
1978.

. Programming in PASCAL by Peter Grogono, Addison-Wesley, Reading Mass., 1978,
357pp.

. Pascal Users Manual and Report by K. Jensen and N. Wirth, Springer-Verlag, New
York, 1978, 170 pp.

. Structured Programming and Problem-Solving with Pascal by R.B. Kieburtz,
Prentice-Hall Inc., 1978, 365 pp.)

. Programming via Pascal by J.S. Rohl and Barrett, Cambridge University Press.

. An__Introduction to Programming and_ Problem-Solving with Pascal by G.M.
Schneider, S.W. Weingart and D.M. Perlman, Wiley & Sons Inc., New York, 394 pp.

. Introduction to Pascal by C.A.G. Webster, Heyden, 1976, 129 pp.

. Introduction to Pascal by J. Welsh and J. Elder, Prentice-Hall Inc., Englewood
Cliffs, 220 pp.

. A Practical Introduction to Pascal by I.P. Wilson and A.M. Addyman,
Springer-Verlag New York, 1978, 145pp; MacMillan, London, 1978.

. Svstematic Programming: An Introduction by N. Wirth, Prentice-Hall Inc.,
Englewood Cliffs, 1973 169 pp.

. Algorithms + Data Structures = Programs by N. Wirth, Prentice-Hall Inc.,
Englewood Cliffs, 1976 366 pp.

This reference manual considers ISO/TC 97/5C 5 N595 as the Pascal Standard although
N565 is a proposed standard and subject to further modification.

STRUCTURE OF THIS MANUAL

This manual is divided into the following major topics
Chapter 1 is a summary of the language.
Chapter 2 is a description of the basic units (lexical) of Pascal/VS.
Chapters 3 through 9 are a top-down presentation of the language.

Chapter 10 describes the I/0 procedures and functions.

Preface iii

Chapter 11 describes the predefined procedures and functions.
Chapter 12 describes the compiler directives.

Appendices provide supplemental information about Pascal/Vs.

PASCAL/VS SYNTAX DIAGRAMS

The syntax of Pascals/VS will be described with the aid of syntax diagrams. These
diagrams are essentially 'road maps'; by traversing the diagram in the direction of
the arrows you can identify every possible legal Pascal/Vs program.

Within the syntax diagram, the names of other diagrams are printed in lower case and
surrounded by braces ('{}'). When you traverse the name of another diagram you can
consider it a subroutine call (or more precisely a 'subdiagram call'). The names of
reserved words are always in lower case. Special symbols (i.e. semicolons, commas,
operators etc) appear as they appear in a Pascal/VS program.

The diagram traversal starts at the upper left and completes with the arrow on the
right. Every horizontal line has an arrowhead to show the direction of the trav-
ersal on that line. The direction of traversal on the vertical lines can be deduced
by looking at the horizontal lines to which it connects. Dashed lines (i.e. f——==1)
indicate constructs which are unique to Pascal/VS and are not found in standard
Pascal.

Identifiers may be classified according to how they are declared. For the sake of
clarity, a reference in the syntax diagram for {id} is further specified with a one
or two word description indicating how the identifier was declared. The form of the
reference is '{id:description}!. For example {id:type} references an identifier
declared as a type; {id:function} references an identifier declared as a function
name.

REVISIDN CODES

The convention used in this document is that all changes in the current version from
the previous edition are flagged with a vertical bar in the left margin.

Extensions to Pascal are marked with a plus sign in the margin,

iv Pascals/VS Reference Manual

TNL SN20-4446 (31 December 81) to SH20-6168-1

SUMMARY OF AMENDMENTS

RELEASE 2.1

The following is a list of the functional changes that were made to Pascals/VS for
Release 2.1.

A procedure (or function) at any nesting level may now be passed as a routine
parameter. The previous restriction which required such procedures to be at the
outermost nesting level of a module has been removed.

Two new options may be applied to files when they are opened: UCASE and NOCC.
Rules have been relaxed in passing fields of packed records by var to a routine.

The "STACK"™ and "HEAP"™ run time options have been added to control the amount at
which the stack and heap are extended when an overflow occurs.

The syntax of a "structured constant"™ which contains non-simple constituents has
been simplified.

RELEASE 2.0

The following is a list of the functional changes that were made to Pascals/VS for
Release 2.0.

Pascal/VS now supports single precision floating point (32 bit) as well as dou-
ble precision floating point (64 bit).

Files may be opened for updating with the UPDATE procedure.

Files may be opened for terminal input (TERMIN) and terminal output (TERMOUT) so
that I/0 may take place directly to the user's terminal without going through
the DDNAME interface.

The MAIN directive permits you to define a procedure that may be invoked from a
non—-Pascal environment. A procedure that uses this directive is not reantrant.

The REENTRANT directive permits you to define a procedure that may be invoked
from a non-Pascal environment. A procedure that uses this directive is reen-
trant.

A new predefined type, STRINGPTR, has been added that permits vou to allocate
strings with the NEW procedure whose maximum size is not defined until the invo-
cation of NEW.

A new parameter passing mechanism is provided that allows strings to be passed
into a procedure or function without requiring vou to specify the maximum size
of the string on the formal parameter.

The maximum size of a string has been increased to 32767 characters.

The Pascals/VS compiler is now fully reentrant.

Code produced from the compiler will be reentrant if static storage is not modi-
fied.

Pascal/VS programs may contain source lines up to 100 characters in length.
Files may be accessed based on relative record number (random access).

Run time errors may be intercepted by the user's program.

Run time diagnostics have been improved.

Pascals/Vs will flag extensions when the option "LANGLVL(STD)" is used.

Summary of Amendments v

TNL SN20-4446 (31 December 81) to SH20-6168-1

vi

A mechanism has been provided so that Pascal/VS5 routines may be called from oth-
er languages.

All record formats acceptable to QS5AM are now supported by the Pascals/Vs 1I/0
facilities.

A procedure or function may now be exited by means of the goto statement.
You may now declare an array variable where each element of the array is a file.
You may define a file to be a field of a record structure.

Files may now be allocated in the heap (as a dynamic variable) and accessed via a
pointer.

You may now define a subrange of INTEGER which is allocated to 3 bytes of
storage. Control over signed or unsigned values is determined by the subrange.

Variables may be declared in the outermost scope of a SEGMENT. These variables
are defined to overlay the variables in the outermost scope of the main program.

The PDSIN procedure opens a member of a library file (partitioned dataset) for
input.

The PDSOUT procedure opens a member of a library file (partitioned dataset) for
output.

A procedure or function that is declared as EXTERNAL may have its body defined
later on in the same module. Such a routine becomes an entry point.

The CPAGE percent(%) statement conditionally does a page eject if less than a
specified number of lines remain on the current listing page.

The MAXLENGTH function returns the maximum length that a string variable can
assume.

The %CHECK TRUNCATE option enables (or disables) the checking for truncation of
strings.

The PASCALVS exec for invoking the compiler under CMS has been modified so that
the specification of the operands allows greater flexability.

New compiler options have been added, namely: LINECOUNT, PXREF, PAGEWIDTH, and
LANGLVL.

The catalogued procedures for invoking Pascals/VS in 05 Batch have been simpli-
fied.

The format of the output listing has been modified so that longer source lines
may be accomodated.

Multiple debugger commands may be entered on single line by using a semicolon
(;) as a separator.

The format of the Pascal File Control Block has been modified.
Support is now provided for ANSI and machine control characters on output files.

Execution of a Pascal/VS program will terminate after a user determined number
of non-fatal run time errors.

The debugger now supports breakpoints at the end of a procedure or function.

The Trace mode in the debugger provides information on when procedures are being
exited.

The TRACE procedure now permits you to specify the file on which the traceback
is to be written.

The Equate command of the debugger has been enhanced.

The debugger will print "uninitialized" when displaying a variable that has not
been assigned.

Pascal/VS Reference Manual

+ +

+

VU PPAPLPLLDDLED W NNNNNNN
. Ll

L1001

Introduction to Pascals/vs

Predafined Constants
7 Predefined Types .
.18 Predefined Variables
.19 Predefined Functions
.20 Predefined Procedures
.21 % Include Statements

The Base Vocabulary
Identifiers
Lexical Scope of Identlflers

Pascal Language Summary .
1.1 Syntax e e e e e e e .
1.2 Modules e e e e e
1.3 Declarations e e e
1.4 Data-Types e e e e e .
1.5 Parameters . .
1.6 Statements . .
1.7 Expressions .
1.8 Operands .
1.9 Special Symbols .
1.10 Identifiers v e e e
1.11 The Hot Operator -
1.12 Multiplying Operators
1.13 Adding Operators . .
1.14 Relational Operators
1.15 Reserved Words . .
1.1¢6
1.17
1
1
1
1

Reserved Words e e e e e
Special Symbols BN « .
Comments e e e e e e e e
Constants .

Structured Cénstants) . : :
structure of a Module . . .

Pascals/vs Declarations .
The Label Declaration .
The Const Declaration .
The Type Declaration .
The Var Declaration e e .
The Static Declaration

The Def/Ref Declaration

The Value Declaration

TYRES . o e o o o
A Hote about Str1ngs . .
Type Compatibility . e .

.2.1 Implicit Type Conversron
.2 2 Same Types e e e e
2.3
2.4

Compatible Types

« 4 s o s e 8

Assignment Compatlble Types

The Enumerated Scalar
The Subrange Scalar
Predefined Scalar Types

.5.1 The Type INTEGER .
.5.2 The Tvype CHAR .
5.3 The Type BOOLEAN
.5.4 The Type REAL . .
.5.5 The Type SHORTREAL

The Array Type . . .
.6.1 Array Subscr1pt1ng

The Record Type . . .
7.1 HNaming of a F1eld e e
.7.2 Fixed Part e e e e e
.7.3 Variant Part PN
7.4 Packed Records . .
.7.5

The Set Type . . .
The File Type .
Predefined Structure Types
The Type STRING . .

Offset QuaIIficatlon of.Faeiés.

¢ o e e 4 s o o

D N

P S R

L N

D I T R

¢ o o s @

o & s s @

L

L N

¢« 4 s & ¢ 2 s s s e s e

]

Contents

o e s e s e @

« & o s s s s e

CONTENTS

e T Y™
PONAVNIUHUNW HPOOVORWORNNNROUTTUD NN N - =

NN
= o

NANNNNNNNRNN
OO0 O A

VIV PRAR LD DLDD LD HEWHUWHWHWWHWLHWW
RPROWAVUVAANNNFROVOINUVIANNNF -

vii

10.2 The Type ALFA
10.3 The Type ALPHA
10.4 The Type TEXT

The Pointer Type .
The Type STRINGPTR
Storage, Packing, and Al]gnment

A= o o

Routinas . . c e o s s e s s e s b e
Routine Declaratlon . .
Routine Parameters .
Pass by Value Parameters
Pass by Var Parameters
Pass by Const Parameters
Formal Routine Parameters
Conformant String Parameters
utine Composition e e e
Internal Routines
FORWARD Routines e e e e
EXTERNAL Routines “ e e e
FORTRAN Routines e ..
MAIN Procedures .
REENTRANT Procedures
Examples of Routines
Funct1on Results .
Predefined Procedures and Functlons

« o

o U
Rt R =S O NANPUNEREDO NOUIRUNEFO DUNEHEO VRO ARRUHAINPRARANERO Preginun

[«

R

v e

WHHUUWUHUW NNRNNR
TUONPUN O BB

.« .

Variables e e e e s s e s e e s eoe s
Array Referencing . .
Field Referencing e e e e e

Pointer Referencing e e e e .

File Referencing ..

. e

Expressions
Operators . e e e e e e .

Constant ExpreSSIOns e e e e e e

Boolean Expressions e e e e e e e
Logical Expressions e e e e e e
Function Call e e e e e e e e
Scalar Conversions e e e e e e e e

Set Constructor e e et e e e e e e e e

Statements . .
The Assert Statement e e e e e e e
The Assignment Statement .
The Case Statement o e e e
The Compound Statement . .
The Continue Statement e e .
The Empty Statement e e e e e
The For Statement e e e e
The Goto Statement e e
The If Statement .« e e
The Leave Statement . e
The Procedure Call
The Repeat Statement
The Return Statement
The While Statement
The With Statement

¢« e e e

.15 WRITE and WRITELN (TEXT Flles) ...
.16 WRITE (Non-TEXT Files) .. e e e .

HEP R R e R R e e OOV VOOV VOOV OO0 0000 NN o
e e e s+ s e s e e 4 a4 e o e e e 4 e . e e e . .

0

1

2

3

&

5
0.0 I/0 Facilities . . & ¢ v ¢ ¢ ¢ ¢ @ o o &
0.1 RESET Procedure e e e e e e . .
0.2 REWRITE Procedure e e e e e e e e
0.3 TERMIN Procedure e e e e e e e e e
0.4 TERMOUT Procedure C e e e e e e
0.5 PDSIN Procedure C e e e e e e e e e e
0.6 PDSOUT Procedure ot e e e e e e e e e
0.7 UPDATE Procedure c e e e e e e e e e e
0.8 CLOSE Procedure e e e e e e e e e e e
0.9 GET Procedure e e e e e e e e e e
0.10 PUT Procedure e e e e e e e e e
0.11 SEEK Procedure e e e e e e e e e
0.12 EOF Function e e e
0.13 READ and READLN (TEXT F11es) . e
0.14 READ (Non-TEXT Files) . .
0
0

viti Pascal/VS Reference Manual

« s e e o s o

e ¢ s o @

L)

L S S S S

P Y

R S T S)

L A A)

o

+ +

+

b b—+

+ +

+ + o+

+F—F + 4+

10.17
10.138
10.19

11.0

— -
- -
et et e o

[y

.
[
fh b b b fod fond bk o fd fed s ok ped s e e e

fe=
-

—
[

et
[y
b e o fd b b ok fah ped fed ok b ek ok 0 b bk et b ot ot et b fod ok ek ek b e

[y
[
b et o et o

b
n
.
CONAUTPUHN RO s bt b 2 00 1 2 S 2 fd b ot (e b b b ot o ot QN e ot 2 o b ot bt o ot ot o o o b U] e b fet ot ot ot o N o b ot 2 et (0 bt et [\ B bt b et
. o . . e - .

12.
12.
12.
12.
12.
12.
12.
12.

. e

o0~ 0‘0\0\0\0\0\0\0\0\0\0\ mmmmmmwummmmmm AL DPLDLD HUHWHWUH NN e

EO
PA
co

Execution Library Facilities
Memory Managament Routines

LI w R

1t

L w K

R OONOUIRWNRY NOUD WO NI DN G R e D N

N=Oo

Con

Mat

—
(%]

.14
STR

0
1
Gen

Svs

PANRFE N HH\O@\‘O\U\«L\MNI—'

The %
The
The
The
The
The
The
The
Tha

LN function v e e e .
GE Procedure e e e e
LS Function e .

MARK Procedure . .
RELEASE Procedura
NEN Procedure .
DISFOSE Procedure

ta Movement Routines

PACK Procedure
UNPACK Procedure
a Access Routines
LOWEST Function
HIGHEST Function
LBOUND Function
HBOUND Function
SIZEOF Function
version Routines
ORD Function ..
CHR Function
Scalar Conversion

FLOAT Function . .
TRUNC Function . .
ROUND Function ..
STR Function c e e
hematical Routines
MIN Function e e e
MAX Function e e
PRED Function .

SUCC Function e .
0DD Function e e e e
ABS Function .
SIN Function e e .
C0S Function e e e
ARCTAMN Function .
EXP Function . e .
LN Function . .
SQRT Function
SQR Function
RANDOM Function
ING Routines ..
LENGTH Function .
MAXLENGTH Function
SUBSTR Function
DELETE Function .
TRIM Function . .
LTRIM Function
COMPRESS Function
INDEX Function
TOKEN Procedure
READSTR C e e
WRITESTR e e
eral Routines e
TRACE Procedure .
HALT Procedure .
tem Interface Routlnes
DATETIME Procedure
CLOCK Function
PARMS Function
RETCODE Procedure

L I

% Featursa . e .
VINCLUDE Statement
%CHECK Statement
%PRINT Statement
%LIST Statement .
%PAGE Statement .
%CPAGE Statement
ATITLE Statement
%ZSKIP Statement

APPENDIXES s e e e s s e s e .

DR

3

-

Contents

L L T R T

115
115
116

117
118
118
118
119
120
121
121
121
122
122
122
123
123
124
125
125
125
126
126
127
127
128
129
129
129
130
130
131
131
132
132
133
133
134
134
135
135
136
136
136
137
137
138
138
139
139
140
140
141
142
142
142
1643
143
143
144
144

145
146
146
146
146
146
146
146
146

147

ix

+ + *

A.0 The Space Type e v s e s s e e
A.1 The Space Declaration e e
A.2 Space Referencing

B.0 sStandard Identifiers in Pascals/vs
C.0 Syntax Diagrams . . . « « ¢« « « o«
D.0 Index to Syntax Diadgrams o« e e e
E.0 Glossary
Index
X Pascal/VS Reference Manual

.....

149
149
149
151
153
165
167

169

"The language Pascal was designed by
Professor Niklaus Wirth to satisfy two
principal aims:

U to make available a language suit-
able for teaching programming as a
systematic discipline based on cer-
tain fundamental concepts clearly
and naturally reflected by the lan-
guage.

. to define a language whose implemen-
tations could be both reliable and
efficient on then available comput-
ers."

(Pascal Draft Proposal IS0O/TC 97/SC 5
N59%95, January, 1981)

Pascal/VS is an extension to standard
Pascal. Tha purpose of extending Pascal
is to facilitate application program-
ming requirements. Among the extensions
are such features as separately compil-

able external routines, internal and.

external static data, and varying length
character strings.

Pascal is of interest as a high level
programming language for the following
reasons:

1.1 PASCAL LANGUAGE SUMMARY

1.0 INTRODUCTION TO PASCAL/VS

It provides constructs for defining
data structures in a clear manner.

It is suitable for applying struc-
tured programming techniques.

The language is relatively
machine-independent.

Its syntax and semantics allow
extensive error diagnhostics during
compilation.

A program written in the language
can have extensive execution time
checks.

Its semantics allow efficient
object code to be generated.

Its syntax allows relatively easy
compilation.

The language is relatively well
known and is growing in popularity.

This section of the manual is meant to be a capsule summary of Pascals/Vs. It should

sarve as a brief outline to the language.

of this document.

1.1.1 Syntax

The details are explained in the remainder

The syntax is described with an example-like format that summarizes the important
features of the item. The following rules are the conventions used.

ces indicates that the item preceding this symbol may be repeated an

arbitrary number of times.

[nmtt

encloses items which are optional.

[1 denote the standard square brackets of Pascal.

item-comma-~list indicates that the item may be repeated, separating each occurrence

with a comma.

digit-list

refers to a sequence of one or more digits (0", ."9"),

binary-digits refers to a sequence of one or more binary digits (70" or "17).

hex-digits refers to a sequence of one or more hexadecimal digits (™0™, . "9" or
"A". ."F") .

id refers to an identifier.

label refgrs to either an identifier or an integer number in the range
0..9999.

directive refers to any one of: FORWARD, EXTERNAL, FORTRAN, MAIN, or
REENTRANT.

Introduction to Pascals/Vs 1

field-list refers to the list of fields that compose the body of a record data

tyvpe.
1.1.2 Modules
program is a self-contained and independently executable unit of code.
program id [(id-comma-list) 1 ;
declaration...
compound-statement
SEGMENT is a shell in which procedures and functions may be separately com-
piled.

SEGMENT id ;
declaration...

1.1.3 Declarations

label is used to declare a label in a program, procedure or function.
label
label-comma-list ;
const declares an identifier that becomes synonymous with a compile time
computable value.
const
id = constant-expression ;
I id = constant-expression ; 1...
type declares an identifier which is a user-defined data type.
type
id = data-type ;
L id = data-type ; 1...
var declares a local variable.
var

id-comma-list : data-tvpe ;
I id-comma-list : data-type ; 1...
def declares a variable which is defined in one module and may be refer-
enced in other modules.

def
id-comma-list : data-type ;
L id-comma-list : data-type ; J1...

ref declares a variable which is defined in another module.

ref
id-comma-list : data-type ;
L id-comma-list : data-type ; 1...

static cdeclares a variable which persists for the entire execution of the
program.

static
id-comma—-list : data-type ;
I id-comma-list : data-type ; 1...

value assigns a value to a def or static variable at compile time.
value
variable constant-assignment-statement ;

I variable constant-assignment-statement ; 1...

2 Pascal/VS Reference Manual

procedure defines a unit of a module which may be invoked as a statement.

procedure id [(parameter [; parameterl...) 1 ;
directive ;
or
procedure id [(parameter [; parameterl]...) 1 ;
declaration...
compound-statement ;

function defines a unit of a module which may be invoked and returns a value.

function id [(parameter [; parameter)...) 1 : id ;
directive ;

or
function id [(parameter [; parameterl...)

1 id ;
declaration...
compound-statement ;
1.1.4 Data-Types
id is an identifier that was previously declared as a type.
enumaration is a list of constants of a user-defined scalar data type.
(id~comma-list)
subrange is a continuous range of a scalar type.
L packed] constant .. constant-expression
array is a data structure composed of a list of homogeneous elements.
I packed] array [data-type 1 of data-type
record is a data structure composed of a list of heterogeneous fields.
I packed 1 record
L id-comma-list : data-type ; J1...
[case [id :1 id of
constant-comma-list : (field-list) ;
L constant-comma-list : (field-list) ; 1... 1
end
set is a collection of zero or more scalar values.
I packed 1 set of data-type
file is a sequence of data to be read or written by a Pascal program.
file of data-type
pointer is a refarence to a variable that is created by the programmer.
a id
1.1.5 Parameters
value designates a pass-by-value parameter.
id-comma-list : id
var designates a pass-by-reference (read/write) parameter.
var id-comma-list : id
const designates a pass-by-reference (read-only) parameter.

const id-comma-list : id

Introduction to Pascal/Vs

procedure

function

is the mechanism whereby a procedure may be passed to the called
procedure (function) and executed from there.

procedure id [(parameter [; parameterl...) 1 ;

is the mechanism whereby a function may be passed to the called pro-
cedure (function) and executed from there.

function id [(parameter [; parameter)...) 1 : id ;

1.1.6 Statements

Every statement may be preceded with one label:

I label:] statement

assert

assignment

case

compound

continue

empty

for

goto

if

leave

tests a condition that should be true and if not causes a runtime
error to be produced.

assert bool-expression
assigns a value to a variable.
variable := expression

causes any one of a list of statements to be executed based upon the
value of an expression.

case expression of
I constant-comma-list : statement ; 1...
[otheruise
statement [; statement 1... 1
end

is a series of statements enclosed within begin/end brackets.

begin

statement [; statement]...

end
resumes execution of the next iteration of the innermost loop. The
termination condition is tested to determine if the loop should con-
tinue.

continue
contains no executable code.

is a loop statement that modifies a control variable for each iter-
ation of the loop.

for variable := expression to expression do
statement
or
for variable := expression downto expression do
statement

changes the flow of yvour program.
goto label

causes one of two statements to be executed based on the evaluation
of an expression.

if bool-expression then
statement

L else
statement]

terminates the execution of the innermost loop. Execution resumes
as if the loop termination condition were true.

4 Pascal/VS Reference Manual

leave

call invokes a procedurae. At the conclusion of the procedure, execution
continues at the next statement.

id L (expression-comma-list)]

repeat is a loop statement with the termination test occurring at the end
of the loop.

repeat
statement [; statement 1...
until bool-expression

return terminates the executing procedure (function) and returns control
to the caller. :
return
while is a loop statement with the termination test occurring at the

beginning of the loop.

while bool-expression do
statement

With permits complicated references to fields within a record to be
treated as simple variables within a a statement.

Wwith variable-comma-list do
statement

1.1.7 Expressions

An expression is composed of operands combined with operators. The operators have
the following precedenca:

not operator (highest)
multiplying operators

adding operators

relational operators (lowest)

1.1.8 Operands

variable represents a unit of storage which may be referenced and altered.
simple variable: id
array: variable [expression 1]
field: variable . id
pointer: variable @
constant represents a literal value.
INTEGER digit-list

' hex—digits "X
' binary-digits 'B

REAL digit-list . digit-list [E+/- digit-listl]
' hex-digits 'XR
BOOLEAN FALSE/TRUE
CHAR EBCDIC character in single quotes
string EBCDIC characters in single quotes
' hex-digits "XC
array id (expraession [! expression]
I , expression [: expression] 1...
record id (expression [, expressionl...)

set-constructor refers to an operand that describes the values of a set.

[expression [.. expression 1
» expression [.. expression 1 1... 1

Introduction to Pascals/V$s 5

)

function-call

refers to the invocation of a function.

id [(expression-comma-list) 1}

parenthesized-expression is used to override the normal precedence of oparators.

(expression)

1.1.9 special Symbols

symbol meaning

+

multiplication and se
division operator,
BOOLEAN not,
or set compleme
BOOLEAN or,
BOOLEAN and,
BOOLEAN xor operator,
and
equality operator
less than operator

i NK

R RY ——

greater than operator

or -= not equal operator

catenation operator
assignment symbol
period to end a modul
field separator
comma,
colon,
semicolon,
subrange notation
quote,
pointer symbol

left parenthesis
right parenthesis
left square bracket
right square bracket

e e e e

or

or
or
or
or

N S bt s D) we

N X

addition and set union operator
subtraction and set difference operator

t

REAL results only
one's complement on INTEGER

nt

logical or on INTEGER

logical and on INTEGER

logical xor on INTEGER
set exclusive union

less than or equal operator
greater than or equal operator

right logical shift on INTEGER
left logical shift on INTEGER

e

in a record

used as a list separator

used to specify a definition

used as a statement separator

used to begin and end string constants

comment left brace (standard)
comment right brace (standard)
comment left brace (alternate form)
comment right brace (alternate form)

intersection operator

1.1.10 Identifiers

Identifiers are composed of the letters "a" through "z",

and the special characters "_" and "s$",
"$Y and must be unique

Pascal/VS Reference Manual

An

in the first 16 positions.
the an upper case letter and its lower case equivalen

the digits "0" through "9"
identifier must begin with a letter or
There is no distinction between

.

1.1.11 The Not Operator

operator operation operands result

-~ (not) boolean not BOOLEAN BOOLEAN

- (hot) logical one's INTEGER INTEGER

complement
- (not) complement set of T set of T
1.1.12 Multiplying Operators

operator operation operands result

* multiplication INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

/ real division INTEGER REAL
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

div integer division INTEGER INTEGER

mod modulo INTEGER INTEGER

& Cand) boolean and BOOLEAN BOOLEAN

& (and) logical and INTEGER INTEGER

% set intersection sot of t set of t

] string catenation STRING STRING

<< logical left shift| INTEGER INTEGER

>> logical right INTEGER INTEGER

shift
1.1.12 Adding Operators

operator operation operands result

+ addition INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

+ set union sat of t set of t

- subtraction INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

- set difference sat of t set of t

| (o) boolean or BOOLEAN BOOLEAN

| (or) logical or INTEGER INTEGER

&& (xXor) boolean xor BOOLEAN BOOLEAN

&& (xor) logical xor INTEGER INTEGER

&& (xor) exclusive union set of t set of t

Introduction to Pascal/Vs

7

1.1.14 PRelational Operators

operator operation operands result
= compare equal any set, scalar, pointer BOOLEAN
or string
<> (-=) not equal any set, scalar, pointer BODLEAN
or string
< less than scalar type or string BOOLEAN
<= compare < or = scalar type or string BOOLEAN
<= subset set of t BOCLEAN
> compare greater scalar type or string BOOLEAN
>= compare > or = scalar type or string BOOLEAN
>= superset sat of t BOOLEAN
in set membership t and sat of t BOOLEAN
1.1.15 Reserved Words

and end of space

array file or static
assert for otherwise then

c9in function racked to
casa goto procedure type
const if prcgram until
continue in ranga valua
da¥f labal record var

div leave ref while

do mod rereat with

dounto nil return xar
else not sat

1.1.16 Predefined Constants

ALFALEN
ALPHALEN
FALSE
MAXINT
MIMINT
TRUE

length of type ALFA, value is 8

length of type ALPHA, value is 16

constant of type BOOLEAN, FALSE < TRUE
maximum value of type INTEGER: 2167483667

minimum value of type INTEGER: ~2147683648
constant of type BOOLEAN, TRUE > FALSE

1.1.17 Predefined Types

ALFA
ALPHA
BEOOLEAN
CHAR
INTEGER
REAL

8 Pascal/VS Reference Manual

packed arrayl 1..ALFALEN 1 of CHAR
packed arrayl 1..ALPHALEN 1 of CHAR

data type composed of the values FALSE and TRUE

character data type

integer data type

floating point represented in a 64 bit value

SHORTREAL

floating point represented in a 32 bit value

STRINGPTR is a predefined tvpe that points to a STRING whose maximum length is
determined when the STRING is allocated with NEW
TEXT file of CHAR
1.1.18 Predefined Variables
INPUT default input file
QUTPUT default output file
1.1.19 Predefined Functions
The following symbols represent parameters in the descriptions
of the predefined functions and procedures.
a = an array variable
f = a file variable
n = a positive integer expression
p = pointer valued variable
5 = a string expression
v = a variable
X = any arthimetic expression
ABS(X) computes the absolute value "x"
ARCTAN(X) returns the arctangent of "x"
CHR(nNn) returns the EBCDIC character whose ordinal value is "n"
cLOCK returns the number of micro—-seconds of execution
COLS(f) returns current column of file "f"
COMPRESS (s) replaces multiple blanks in "s" with one blank
C08(x) returns the cosine of "x"
DELETE(S,n1,Nn2) returns "s" with characters "nl"™ through "n2" removed
EOF(f) tests file "f" for end-of-file condition
EOLN(T) tests file "f" for end-of-line condition
EXP(X) computes the base of the natural log (e) raised to to the power "x"
FLOAT(n) converts "n" to a floating point value
HBQUND(&#L,nl) determines the upper bound of array "a"
HIGHEST(X) determines the maximum value the type of a scalar "x"

INDEX(sl,s2)
LBOUND(al,nl)
LENGTH(s)
LN(x)
LONEST(X)
LTRIM(Ss)
MAX(xL,x1...)
MAXLENGTH(S)

returns the location, if present, of "s2" in "sl"

datermines the lower bound of array "a"

determines the current length of string "s"

returns the natural logarithm of the "x"

determines the minimum value the type of a scalar "x"
returns "s" with leading blanks removed

determines the maximum value of a list of scalar expressions

determines the maximum length of string "s"

Introduction to Pascal/VSs

MIN{xI,x1...)
0oDD(n)
ORD(x)
PARMS
PRED(x]}
RANDOM(nN)
ROUND(X)
SIN(X)
SIZEOF(x)
SQRT(x)
SQR(x)
STR(a)

SUBSTR(s,nl,n2)

succ(x)
TRIM(S)
TRUNC(x]}

determines the minimum value of a list of scalar expressions
returns TRUE if integer "n" is odd

converts a scalar value "x" to an integer

returns the system dependent invocation parameters

obtains the predecessor of scalar expression "x"

returns a pseudo-random number, "n" is the seed value or zero
converts a floating point value to an integer value by rounding
returns the sine of "x"

determines the memory size of a variable or type

returns the square root of "x"

returns the square of "x"

converts array of characters "a" to a string

returns the substring of "s" from "nl"™ to "n2"

obtains the successor of scalar "x"

returns "s" with trailing blanks removed

converts floating point expression "x" to an integer by truncating

1.1.20 _pPredefined Procedures

CLOSE(F)

closes a file

DATETIME(al,a2) returns the current date in "al"™ and time of day in "a2"

DISPOSE(p)
GET(f)

HALT

MARK(p)
NEW(p,L,x1...)
PACK(al,X,a2)
PAGEL(f)]
PDSIN(f,s)

PDSCUT (f,s)

PUT(F)

deallocates a dynamic variable

advances file pointer to the next element of input file "f"
halts the programs execution

creates a new heap, "p" designates the heap

allocates a dynamic variable from the most recent heap
copies array "al" starting at index "n" to packed array "a2"

skips to the top of the next page

opens file "f" for input, "s" designates the open options which must

specify the member name

opens file "f" for output,
must specify the member name

" S“

advances the file pointer to the next element of output file "f"

READ(If,1vI,vl...) reads data from file "f" into variable "v"

READLN(Lf,1vEl,v]...]) reads variable "v" and then skips to end-of-line of TEXT file

" .Fl'

READSTR(s,VI,Vvl...) reads data from string "s" into variable "v"

RELEASE(p)

RESET(f[,s])

destroys one or more heaps, "p"

destroved

opens file "f" for input, "s" designates the optional open options

10 Pascal/VS Reference Manual

designates the open options which

designates the last heap to be

RETCODE(nNn)
REWRITE(fL,s])
SEEK(f,n)

TERMIN(fL,s1)

TERMOUT(FL,s1)

TOKEN(s,V)
TRACE(F)
UNPACK(al,a2,n)
UPDATE(f[,s])

TNL SN20-4446 (31 December 81) to SH20-6168-1

sets the system return code

opens file "f" for output, "s"'designates the optional open options
modifies the current position of file "f' so that next GET (or PUT}
reads (or writes) record number "n", uwhere record 1 is the first
record of the file

opens file "f"for input from the users terminal, "s" designates the
optional open options

opens file "f"for output from the users terminal, "s" designates the
optional open options

extracts tokens from string "s" updating starting position "v"
writes the procedure and function invocation history to file "f"
copies packed array "al" to array "a2" beginning at index "n"

opens file "f" for update, a PUT immediately following a GET of a

record of the file replaces that record, "s" designates the optional
open options

WRITE(Lf,IxL,Xx1...) writes the value of "x" to file "f"

HRITELN(Lf,IX[,X]...]) writes the value of "x" and then writes an end-of-line to TEXT

file "f"

WRITESTR(s,xL,x]...) writes the value of "x" to string "s"

1.1.21 % Include Statuments

%CHECK
%CPAGE n

%INCLUDE
%LIST ON/OFF
%MARGINS n m

%PAGE

%PRINT ON/OFF
%SKIP n
%TITLE

enables or disables execution time checking features.

skips to the next page if less than "n" lines remain on the current
page

includes source code from a library.
enables or disables the pseudo-assembler listing.

resets the left margin of the source program to "n" and the right
margin to "m".

forces the source listing to start on a new page.
enables or disables the source listing.
inserts "n" blank lines into the source listing.

specifies a title for the listing.

Introduction to PascalsVs 11

2.1 IDENTIFIERS

2.0 THE BASE VOCARBULARY

Syntax:

id:

>{digit}
>{lettar}

——>{letter} l
<

—_—
—
-—=>{underscorel-->]

where:

{digit} is '0', '1', ..., '9"
underscore is '_'

{letter} is 'A', 'B', ..., 'Z','a','b', 'z'" or 'S’

Identifiers are names given to vari-
ables, data types, procedures, func-
tions, named constants and modules.

correct: incorrect:
I 5K
K9 NEW JERSEY
New_York
AMOUNTS

Valid and Invalid Identifiers

Pascal/VS permits identifiers of up to
16 characters in length. You may use
longer names but Pascal/VS will ignore
the portion of the name longer than 16
characters. You must assure identifiers
are unigque within the first 16
positions.

There is no distinction between louwer
and upper case letters within an identi-
fier name. For example, the names
YALPHA', 'alpha', and 'Alpha' are equiv-
alent.

There is an implementation restrictions
on the naming of external variables and

external routines. You must make sure
that identifiers used as external names
are unique in the first 8 characters.

2.2 LEXICAL SCOPE OF IDENTIFIERS

The area of the module where a partic-
ular identifier can be referenced is
called the lexical scope of the identi-
fier (or simply scope).

In general, scopes are dependent on the
structure of routine declarations.
Since routines may be nested within oth-
er routines, a lexical level is associ-
ated with each routine. In addition,
record definitions define a lexical
scope Tor the fields of the record.
Within a lexical level, each identifier
can be defined only once. A program
module is at level 0, routines defined
within the module are at level 1l; in
general, a routine defined in level i
would be at level (i+l). The following
diagram illustrates a nesting
structure.

The Base Vocabulary 13

program M (level 0)

procedure A (level 1)

procedure B (level 2)

type
R =
record
Ri:...
R2:...
end;

function C
(lavel 3)

procedure D (level 2)

function X (level 1)

procedure Y (level 2)

procedure Z (level 2)

The scope of an identifier is the entire
routine (or module) in which it was
declared; this includes all routines
defined within the routine. The follow-
ing table references the preceding dia-
aram.

14 Pascal/VS Reference Manual

identifiers

declared in: are accessible in:

Module M
preocedure A
procedure B
type R
function C
procecdure D
function X
procedure Y
procedure 2

»D,X,Y,2

N<X<XoOww>»3

If an identifier is declared in a rou-
tine which is nested in the scope of
another identifier with the same name,
then the new identifier will be the one
recognized when its name appears in the
routine. The first identifier becomes
inaccessible in the routine. In other
words, the identifier declared at the
inner most level is the one accessible.

The scope of a field identifier defined
within a record definition is limited to
the record itself. The scope of a
record may be accessed by either field
referencing (see "Field Referencing” on
page 68) or with the with~statement (see
"The With Statement™ on page 100).

The Pascal’/V$s compiler effectively
inserts a prelude of daclarations at the
beginning of every module it compiles.
These declarations consist of the prede-
fined types, constants, and routines.
The scope of the prelude encompasses the
entire module. You may re-declare any
identifier that is predefined if vou
would like to use the name for another
purpose.

2.3 RESERVED WORDS

Reserved Words

and end
array file

+ assert for
begin function
casa agoto
const if

+ continue in

+ def label
div + leave
do mod
dounto nil
elsa not

of + space
or + static
otheruise then
packed to
procedure type
program until

rangg + value
record var
ref while
repeat with
raturn + xor
sat

note: those words marked by '+' are not reserved in standard Pascal

Pascal/Vvs reserves the identifiers
shown above for expressing the syntax of
the language. These reserved words may
never be declared by vyou. Reserved
words must be separated from other

reserved words and identifiers by a spe-

cial symbol, a comment, or at least one
blank.

A lower case letter is treated as equiv-

alent to the corresponding upper case
letter in a reserved word.

The Base Vocabulary 15

+ + +

2.% SPECIAL SYMBOLS

Special Symbols

symbol meaning

+ addition and set union operator
subtraction and set difference operator
multiplication and set intersection oper
division operator, REAL result only

N X |

BOOLEAN not, one's complement on INTEGER
BOOLEAN or, logical or on INTEGER
BOOLEAN and, logical and on INTEGER

& BOOLEAN xor operator, logical xor on INT
and set exclusive union

Q0 QO e |

equality operator

less than operator

less than or equal operator
greater than or equal operator
greater than operator

or ~= not equal operator

ANVVAAI
"n

v

>> right logical shift on INTEGER
<< left logical shift on INTEGER
I catenation operator

= assignment symbol

period to end a module

. field separator in a record

» comma, used as a list separator

colon, used to specify a definition
semicolon, used as a statement separator
subrange notation

quote, used to begin and end string cons
or => pointer symbol

s oo

~ -
.

left parenthesis
right pareihthesis
or (. left square bracket
or .) right square bracket

or (¥ comment left brace (standard)
or %) comment right brace (standard)
comment left brace (alternate form)
comment right brace (alternate form)

KN pq armw A

NOXK

ator

or set complement

EGER

tants

Symbol Res
Special symbols used by Pascal/V5 are -
listed above. Several special symbols |
may also be written as a reserved word. &
These symbols are shown in the following &8
table.

16 Pascals/VS Reference Manual

erved Word

not
or

and
xor

2.5 COMMENTS

PascalrsVs supports two forms of
comments: Y{ ... }' and "/¥%...%/', The
curved braces are the standard comment
symbol in Pascal. The symbols '"(¥' and
'¥)' are considered by the compiler to
identical to left and right braces. The
form of comment using "/%' and "%/' is
considered to be distinct from the form
using braces.

When the compiler encounters the symbol
*{', it will bypass all characters,
including end-of-line, until the symbol
'} is encountered. Likewise, all
characters following v/x' will be
bypassed until the symbol "%/' is detec-
ted. As a result, either form may be
used to enclose the other; for example
7¥%...{...}...% is one comment. One use
of these two forms of comments is to use

one for ordinary comments and use the
other to block out temporary sections of
coda: a '/¥...¥/' comment could be used
to indicate a temporary piece of code,
or perhaps debugging statements.

A comment may be placed anywhere in a

module where a blank would be
acceptable.
/%

if A = 10 then { this statement is
for program
debugging }
WRITE('A IS EQUAL TO TEN'");
¥/

Example of a nested Comment

The Base Vocabulary 17

+ 4+

+ +

2.6 _CONSTANTS

Syntax:
unsigned-integer:
——_T——-I——‘>(digit} T >
<' {b d t} > 'B >I
iiadnl et B >{binary digit}-—-—-p--- -——-
T;o22lbinary digit)--- T 1
e i sl >{hex-digit}-~~p==- > X ———-——- >4
T__Zihexzeisetizi—=- T
real-number:
—==> ' ———r--- >{hex-digit}-==-7--- > 'XR —=mmmm e ———— e >
Too>thexcdisitd - T 1
-—Tf——>{digit} > >{digit} } >
<] [.(l
<
f<
> E [>{digit} T >
>+ ———>J <
—> - >
unsigned-number:
>{unsigned-integer} >
—_“I:::>(real—number}———————~>]
string:
> > 0 >
| l'<——"{char‘acter‘}<——-—-—I
Leeed e >{hex-digit}---1--- > 'XC ~----- >4
T fihexraistitiz - T
unsigned-constant:
——1—>{unsigned-number} >
——>{string} ——
——>{id:constant}——m——>
—> nil >
constant:
——"t~——>{un5igned—constant} -] >
>+ > - ——
| > >J {unsigned-number}
where:
{binary-digit} is '0' or '1°'.
{digit} is '0' through '9°';
{hex-digit} is "0' through '9' and 'A' through 'F';
{character}) is any EBCDIC character.

Constants can be divided into several
categories according to the predefined
type to which they belong. An unsigned
number will conform to either a REAL or

an INTEGER. Strings will conform to the
type STRING or packed arrayll..n] of
CHAR. In addition, if the string is one

character in length, it will conform to

the type CHAR.

18 Pascal/VS Reference Manual

If a single quote is to be used within a
string, then the quote must be written
twice. Lower case and upper cise let-
ters are distinct within string con-
stants. String literals are not
permitted to extend past the end of line
of a source line. Longer strings can be
formed by catenating shorter strings.

R Rk b o T A I S S S S R AV R A SRR PR

Nil is of a special type which will con-
form to any pointer type. It represents
a unique pointer value which is not a
valid address.

The constants TRUE and FALSE are prede-
fined in the language and are of the
standard type BOOLEAN.

Integer hexadecimal constants are
enclosed in quotes and suffixed with an
X' or 'x'. Integer binary constants
are enclosed in quotes and suffixed with
a 'B' or 'b'.

Hexadecimal constants may be used in any
context where an integer constant is
appropriate. If you do not specify 8
hexadecimal digits (i.e. 4 bytes), Pas-
cal/VS assumes that the digits not sup-

plied are zeros on the left. For
example, 'F'x is the value 15.
Floating point hexadecimal constants

are enclosed in quotes and suffixed with
an 'XR' or 'xr'. Such constants may be
used in any context where a real con-
stant is appropriate. If you do not
specify 16 hexadecimal digits (i.e. 8
bytes), Pascal/VS assumes that the dig-
its not supplied are zeros on the right.
For example, '64110'xr is the same as
'411000000000000"xr.

String hexadecimal constants are
enclosed in quotes and suffixed with an
'XC' or 'xc'. Such constants may be
used in any context where a string con-
stant is appropriate. There must be an

+ 4+ + +

o+

TNL SN20-4446 (31 December 81) to SH20-6168-1

even number of digits within a hexadeci-
mal string constant; that is, you must
specify each character fully that is to
be in the string.

The symbol 'E' or 'e!
real-number expresses
of'.

when used in a
'ten to the pouer

Pascal/VS permits constant expressions
in places where the Pascal standard only
permits constants. Constant expres-
sions are evaluated and replaced by a
single result at compile time. See
"Constant Expressions" on page 76 for a
description of constant expressions.

constant matches standard type
0 INTEGER
-500 INTEGER
1.0 REAL
314159E-5 REAL
0EO REAL
1.0E10 REAL
TRUE BOOLEAN
'FF'X INTEGER
A CHAR
"ABC? STRING
'CiC2C2'xe STRING
'4E800000FFFFFFFF'xr REAL
'abe! STRING
v STRING
rYvYe CHAR
vy CHAR
LI STRING
'"Thats''s all ! STRING

Examples of Constants

The Base Vocabulary 19

SV R VU U P I PRV S R E Tk e e e i s 0 R I S I I S

TR T Tk Tk o 2 o ik It I S S

TNL SN20-4446 (31 December 81) to SH20-6168-1

2.7 STRUCTURED CONSTANTS

Syntax:?
structured-constant:
--"I~-—>{record~5tructure}——-j --- >
--->{array-structurel--->
record-structure:
--->{id:typel-==> (-=-g==-p--- >{constant-expr}---g---7--- >) mmmmmmmm—m e >
TTTTIII feonstantzexerd = T
Lmmm e m y K= 4
array-structure:
-=-=>{id:typael---> (—-->]
(———————————————————
-—T--T——>{constant expr}-—I—-> {repetxtxon}—-I--T —T-—->) —————————- >
I ettt kbl >4]
e) K mm e 4
repetition:
--=>{constant-exprl}-———————mmm e e e e e >
note: must evaluate to positive integer.
Structured constants are constants | The second kind of structured constant
which are of a structured type. The + is used to specify records. Record con-
type of the constant is determined by + stants are specified by a list of con-
the type identifier wthich is used in its + stant expressions where each expression
definition. These constants may be used defines one field of the record in the
in constant declarations, value decla- order declared. You may omit a field of
rations or in executable statements. the record within the list by specifying
nothing between two commas, in which
There are two kinds of structured con- + case the value of that field is
stants: one is used for arrays and the + defined.
second is used to specify records. +

Array constants are specified by a list

of constant expressions where each
expression defines one element of the
array. See "Constant Expressions™ on
page 76 for a description

of constant expressions. You may omit
an element of the array within the list
in which case the value of that element
is not defined. Elements may be omitted
at the end of the array in which case
the value of those elements are also not
defined. You may follow the constant
expression with a colon and a repetition
expression; this is used to specify that
the first constant expression is to be
repeated.

Values within the list may correspond to

fields of a redord's variant part. In
order for the compiler to know which
variant is being referenced, the tag

field value must be specified immediate-
ly prior to those values which are to be
assigned to the variant fields. (See the
examples below.) The tag field must be
specified even if it does not exist as a
field. (This occurs when only a tag tvpe
is specified.)!? ,

The type identifier that begins a struc-
tured constant may be omitted if the
structured constant is imbedded within
another structured constant. This sim-
plifies the syntax for structured con-
stants which are multidimensional

1 If the tag field is a "refer-back™ type (see "Variant Part"™ on page 45) then

it will need to be specified tuwice in the list: once to be assigned a value,
and again to identify the variant being referenced.

20 Pascal/VS Reference Manual

bt b—+ + 4+

AR R S Y

3.0 STRUCTURE OF A MODULE

Syntax:
module:
T e ment-moduler 5] ”
program-module:
—> program —>{id} l > (» >{:d1__‘] >) J >]
________________________________ >
< ;3 <
<
‘------'->{declar‘ation}———>-I
-——>{compound-statement} > . >
declaration:
~——>{label-dcl}——>1
-—> {constant-dcl} >
——> {type-dcl}———>
——>{var-dcl}——>
F-=->{def-decl}--~----~-- >
~-->{static-dcl}------ >4
F--=>{value-dcl}-------~ >
—>{routine-dcl} > >
segment-module:
==-> SEGMENT --->{id}---> ; *~->]
S e
F-—-=>{constant-dcl}---->
F~~~>{type-decl}~~-----—~ >
t——~>{var-dcl}-----=--- >
F--->{def-dcl}--===—=-- >
F--=>{static-decl}-————- >
F-—->{value-dcl}------- >
F=~=>{routine-dcl}-—--- >
L e > e e >

A module is an independently compilable
unit of code. There are two types of
modules in Pascals/VS: the program module
and the segment module.

The program is the module which gains
initial control when the compiled pro-
gram is invoked from the system loader.
It is effectively a procedure that the
loader invokes. The body of a program

Structure of a Module 21

R A

module is identical to the body of a
procedure.

A segment module may be compiled as a
unit independent of the program module.
It consists of routines that are to be
linked into the final program prior to
execution. Data is passed to routines
through parameters and external vari-
ables. Segments are useful in breaking
up large Pascal/VS programs into smaller
units.

The olobal automatic variables of the
program module may be accessed in a seg-
ment module. See "The Var Declaration™
on page 26 for an explanation.

The identifier following the reserved
word "program” must be a unique external
name. The identifier following the word
"SEGMENT" may be the same as one of the
EXTERNAL routines in the segment or may
bae a unique external name. Thus, a
function called SIN could be in a seg-
ment called SIN. An external name is an
identifier for a program, segment, def
or ref variable, EXTERNAL routine, MAIN
procedure or a REENTRANT procedure.

R L R

Pascal/VS program

The optional identifier list following
the program identifier is not used by
Pascal/Vs. The identifiers will be
ignored.

A program is formed by linking a program
module with segment modules (if any) and
with the Pascals/VS execution library and
libraries that you may supply.

Pascals/VS allows declarations to be giv-
en in any order. This is an extension
to Pascal and is provided primarily to
permit source that is INCLUDEd during
compilation to be independent of any
ordering already established in the mod-
ule. The standard ordering for
declarations is shown in the diagram for
declarations. (For a description of the
INCLUDE facility see "The %INCLUDE
Statement™ on page 146.)

Every identifier must be predefined or
declared by vou before it is used.
There is one exception to this rule: a
definition of a pointer may refer to an
identifier before it is declared. The
identifier must be declared later or a
compile-time' diagnostic will be
produced.

modules

|

[

program—-module segmen

t-modules

——:——1[“—:——

execution-library

program EXAMPLE;

var

I @ INTEGER;
bhagin

for I:=0 to 1000 do
if I mod 7 = 0 then
WRITELNC I:5,
'* IS DIVISIBLE BY SEVEN')

end.

Example of a Program Module

SEGMENT COSINE;
function COSINE
(X : REAL) : REAL; EXTERNAL;

function COSINE;
var S: REAL;
beain

S := SIN(X);

COSINE := SQRT(1.0 - 5%S)
end;

Example of a Segment Module

22 Pascal/VS Reference Manual

Pascal/VS provides you with 10 types of
declarations:

. label

. const

. type

. var

%.1 THE LABEL DECLARATION

+ A+

4.0 PASCAL/VS DECLARATIONS

def

ref
static
value
procedure

function.

—>{unsigned-integer})
—==>{id}-—--mmmm—= oo >

Syntax:
label-dcl:
—> label ~——I:——>{la?ei} I > >
label:
>

Note: the values of the unsigned integer must be in the subrange 0..9999.

A label declaration is used to declare
labels which will appear in the routine
and will be referenced by a goto state-
ment within the routine. All labels
defined within a routine must be
declared in a label declaration within
the routine.

A label ray be either an unsigned inte-
ger or an identifier. If the value is
an unsigned integer it must be in the
range 0 to 9999.

Error_exit;

A Label Declaration

Pascal/VS Declarations 23

§.2 THE CONST DECLARATION

Syntax:

constant-decl:

+ —> const [>{id} > = >{constant-expr} > 3 >
<
A constant declaration allows you to
+ assign identifiers that are to be used
+ as synonyms for constant expressions. const
The type of a constant identifier is BLANK = v
determined by the type of the expression BLANKS = '
in the declaration. FIFTY = 50;
A = FIFTY;
B = FIFTY % 10/(3+2);
C_SQUARED = AXA + BXB;
ORD_OF_A = ORD('A');
PI = 3.164159265358;
MASK = '8000'X | '0400'X;
ALFALEN = 8;
ALPHALEN = 16;
LETTERS =0 "Av..'Z%,'a'..'2'"]
MAXREAL = Y7FFFFFFFFFFFFFFF'xr;

24 Pascal/VS5 Reference Manual

Constant Declarations

4.3 THE TYPE DECLARATION

Syntax:

tvpe-dcl:
—> type l >{id} > = >{typel > >
<

A type declaration allows you to define
a data type and associate a name to that

type. Once declared, such a name may be type
used in the same way as a predefined
type name. { all of the following types 1}

{ are predefined in PascalsVs }

INTEGER = MININT..MAXINT;
BOOLEAN = (FALSE,TRUE);

ALFA packed arrayll..ALFALEN]
of CHAR;

ALPHA = packed arrayll..ALPHALEN]
of CHAR;

TEXT = file of CHAR;

Type Declarations

Pascal/VS Declarations 25

6.4 THE VAR DECLARATION

Syntax:
var-dcl:
—_— >{i > @ > 3} > 3 >
var ———If——T:—— {:d}] {type H
<
The var declaration is used to declare The oglobal automatic variables of the

automatic variables. Automatic vari-
ables are allocated when the routine is
invoked, and are de-allocated when the
corresponding return is made. If the
routine is invoked a second time, before
an initial invocation completes (a
recursive call), the local automatic
variables will be allocated again in a
stack=like manner. The variables allo-
cated for the first invocation become
inaccessible until the recursive call
completes.

Commas are used in the declaration to
separate two or more identifiers that
are being declared of the same type.
This is a shorthand notation for two
separate declarations.

var
I : INTEGER;
SYSIN TEXT;
X
Y,
Z ¢ REAL;
CARD
record
RANK = 1..13;
SUIT (SPADE,HEART,DIAMOND,CLUB)
end;

Example of a Var Declaration

Variables which are to be accessed
across modules should be declared as daf
variables (see "The Def/Ref
Declaration™ on page 28), but if
reentrancy is required, then a mechanism
is required that does not rely on static
storage.

i That is,
nesting level of the main program.
2 That is,

no way of checking the integrity.

26 Pascal/VS Referance Manual

unpredictable errors can occur when the variables declared i
segment do ndt match those in the associated main program.

main .program! may be accessed from a
segment module. The storage for auto-
matic variables declared in the outer-
most level of a segment are mapped
directly on top of the main program
global variables. Therefore, to access
the main program globals, a segment mod-
ule must have an identical copy of the
main program's variable declarations.
This mechanism is not as safe? and as
convenient as using def variables.

If the variables of the main program are
to be accessable across modules then the
%ZINCLUDE facility should be used so that
identical copies of the variable's dec-
larations can be included in all
modules. (See "The %INCLUDE Statement"
on page 146).

program MAIN;

var

I : INTEGER;

X,

Y : REAL;

J ¢ INTEGER:;

ce {remainder of program module}
SEGMENT SEG;
var

i : INTEGER;

Y : REAL;

J : INTEGER;

e {remainder of segment module}

Example of a Var Declarations
Shared between Programs and Segments

those variables declared with the var construct in the outermost

n a
The compiler has

I R T T R e L E T I I Tt Sy Sy i Ui A PRI

TNL SN20-4446 (31 December 81) to SH20-6168-1

%.5 THE STATIC DECLARATION

Syntax:
static-dcl: .
---> static ———T—--I-~->{id}--—j———> ¢ ===>{typel---> ; —--T --------------- >
===, —=—=
L e e]

The static declaration is wused to + Static variables may be initialized at
declare static variables. The variablaes + compile-time by the use of a value dec-
declared in this way are allocated prior + laration.
to program execution and exist for the +
life of the program's execution. Programs which modify static variables
are not reentrant.
Static wvariables can be referenced
according to the lexical scoping rules. +
Two static variables in different scopes +
are different variables even though they + static
have the same name. + SYSPRINT : TEXT;
+ X,Y: REAL;
Data in static variables that are local +
to a routine will be preserved over sep- + Example of a Static Declaration
arate invocations of the routine. Such +
a routine called recursively will access +

the same instance of each static vari-
able.

Pascal/VS Declarations

27

T T T i o T S R e o e i S e e i i i i I S o o

TNL SN20-4446 (31 December 81) to SH20-6168-1

.5 THE DEF/REF DECLARATION

Syntax:
def-dcl:
——————— > def -—--7---7---7-—-->{id}--—p7-——-> --=->{typel---> ; -r-7--———---->
[+ A [DAL T
e |

The def/ref declarations are used to
declare external variables. External
variables are allocated prior to exe-
cution and can be accessed from more
than one module. All identifiers that
are to be used as external names must be
unique in the first eight characters.

If an external variable with a partic-
ular name is declared in several
modules, a single common storage
location will be associated with each
such variable. An external variable
must be declared with identical types in
each module; the programmer is responsi-
ble for assuring that the types are the
same.

The def declaration specifies that the
program loader is responsible for gener-
ating the common storage for the vari-
able. The ref declaration specifies
that storage for the variable is defined
in another module (or in the runtime
environment). Ref declared variables
Will remain unresolved until the encom-
passing module is compiled and linked
with a module in which the variable is
declared as a def variable or defined in
a non-Pascal CSECT or in an assembly
language COM. The expected use of ref
variables is to access external data
declared in non-Pascal/V$S programs such
as those written in assembly language.

A def or ref variable may be declared
local to a routine; the same scope rules
apply as for any other declared identi-
fier. However, if the name of the vari-
able is declared in another scope (even
in another module) as a def or ref vari-
able, both occurrences of the variable
Wwill reference the same storage.

the variable X
B, and C references the

In the following example,
in procedures A,

28 PascalsVS Reference Manual

FO R A

T e M A T ok s i T S S S R IR

same storage; however, the variables X
declared in segment P and procedure D
each refer to storage that is separate
from the external variable X.

Def variables may be initialized at com-
pile-time by the use of a value declara-
tion.

Programs which modify def, ref, or stat-
ic variables are not reentrant.
SEGMENT M;
procedure. A;
def X: REAL; { same as X in B }
begin
end;
procedure B;
daf X: REAL; { same as X in A }
beain
enc'iﬁ
SEGMENT P;
static X: REAL;{ local to P }
procedure C;
ref X: REAL; { same as X in A,B}
begin
enél§)
procedure D;
var X: REAL; { local to D }
begin
end; .

Examples of Def and Ref Declarations

i R k aik t ait ol oI o S S AR P U AU IS PG PUN PRSI FUS U PUSPUS VI IR PR U PRI PGS PP PO PR PSR

TNL SN20-4446 (31 December 81) to SH20-6168-1

%.7 THE VALUE DECLARATION

Syntax:

value-dcl:

value-assignment:

--=>{variable}---> := --—I—-->{constant—expression}—---T ------------------- >
-==>{structured-constant}--->

note: If the variable contains subscripts, the subscripts are limited
to constant expressions.

The value declaration is used to specify + If a def variable is initialized with a
an initial value for static and def var- + value declaration in one module, you may
iables. The declaration is composed of + not use a value declaration on that var-
a list of value-assignment statements + iable in another module. The compiler
separated by semicolons. The assignment + will not check this violation, however a
statements in a value declaration are of + diagnostic will be generated when vou
the same form as the assignment state- + combine the modules into a single load
ments in the body of a routine except + module by the system loader.
that all subscripts and expressions must +
be able to be evaluated at compile time. +
+ type
CUBE = arrayli1..10,1..10,1..101
of REAL;
typa
COMPLEX = record + static
RE,IM: REAL + BLOCK ¢t CUBE:
and; +
VECTOR = arrayll..7] of IMNTEGER; + { the following assignments will 3}
+ { take place at compile time }
static + value
C: COMPLEX; + BLOCK T =
V: VECTOR; | CUBEC € (0.0:10):10):10);
V1i: YECTOR; *
+ Example of Intializing
def + a 3 Dimensional Array
I : INTEGER; +
Q@ : arrayll1..10] of COMPLEX; +

{ the following assignments will }
{ take place at compile time }

value .
c = COMPLEX(3.0,4.0);
v = VECTOR(1,0:5,7);
Vi = VECTOR(,,,4);
viz2] = 23
Vi3] = 3%6-1;
I = 05
QL1].RE := 3.141592¢6 7/ 2;
QLLI.IM := 1.416;

Example of a Value Declaration

Pascal/V¥S Declarations

29

+ + +

5.0 TYPES

Syntax:
type:
———>{id:typel} >
——>{enumerated-scalar-type} >1
——>{subrange-scalar-type} >
-——>{array-typel} >
——>{record-type} >4
——>{set-typel} >4
——>{file-typel >4
——>{pointer-typel > >

A data type determines the kind of val-
ues that a variable of that tvpe can
assume. Pascals/VS allows you to define
new data tvpes with the tvpe
declaration. The data type mechanism is
a very important part of Pascal/Vs.
With it you can describe your data with
great clarity.

There are several mechanisms that can be
used to define a type; each mechanism
allows the new data type to have certain
properties. All data types can be clas-
sified as either scalar, pointer, or
structured.

You define the data type of a variable
when the variable is declared. A previ-
ous type declaration allows an identifi-
er to be associated with that type. Such
an identifier can be used wherever a
type definition is needed: in a variable
declaration (var, static, def, or ref),
as a parameter, in a procedure or func-
tion, in a field declaration within a
record definition, or in another type
declaration.

5.1 A NOTE ABOUT STRINGS

Standard Pascal defines the term
"string" as a variable or constant which
has an associated type of

"packed arrayll..n] of CHAR", where n is
a positive integer constant.

PascalsVs supports varying length
strings; that is, strings which have
lengths that vary at execution time. A
variable may be declared as a varying
length string with the predefined type
STRING (see "The Type STRING" on page
51).

Throughout this manual the term "string"
shall refer to an object of the prede-
fined type STRING.

5.2 _TYPE COMPATIBILITY

e ettt e et e 0 St et 0 8 8,

Pascal/VS supports stron typin of
data. Tha strong tvping permits
Pascals/VS to check the validity of many
operations at compile time; this helps
to produce reliable programs at exe-
cution time. Strong typing puts strict
rules on what data tvpes are ccnsidered
to be the same. These rules, called
tvpe compatibility, requires vyou to
caraefully declare data.

5.2.1 Implicit Type Conversion

In general, Pascal’/VS does not perform
implicit type conversions on data. The
only implicit conversions that
Pascal/VS permits are:

1. An INTEGER will be converted to a
REAL (SHORTREAL) when one operand of
a binary operation is an INTEGER and
the other is a REAL (SHORTREAL).

2. An INTEGER will be converted to a
REAL (SHORTREAL) when assigning an
INTEGER to a REAL (SHORTREAL) vari-
able.

3. An INTEGER will be converted to a

REAL if it is used in a floating
point divide operation ('/V),

Types 31

PRI R e

4. An INTEGER will be converted to a
REAL (SHORTREAL) if it is passed by
value or passed by const to a param-
eter requiring a REAL (SHORTREAL)
value.

5. A SHORTREAL will be converted to a
REAL when one operand of a binary
operation is a SHORTREAL and the
other is a REAL.

6. A SHORTREAL will be converted to a
REAL when assigning a SHORTREAL to a
REAL variable.

7. A SHORTREAL will be converted to a
REAL if it is passed by value or
passed by const to a parameter
requiring a REAL value.

8. A string will be converted to a
'packed arrayll..n] of CHAR' on
assignment. The string will be pad-
ded with blanks on the right if it
is shorter than the array to which
it is being assigned. Truncation
will raise a runtime error if check-
ing is enabled.

9. A string being passed by value or
passed by const to a formal parame-
ter that requires a
'packed arrayll..n]l of CHAR' will
be converted. The string will be
padded with blanks on the right if
it is shorter than the -array to
which it is being passed. Trun-
cation will raise a runtime error if
checking is enabled.

5.2.2 Same Types

Two variables are said to be of the same

tvpe if the declaration of the
variables:
. refer to the same type identifier;

. or, refer to different type identi-
fiers which have been dafined as
equivalent by a type definition of
the form:

typa T1 = T2

32 Pascal/VS Reference Manual

++ +

5.2.3 compatible Types

Operations can be performed between two
values that are of compatible tvpes.
Two types are said to be compatible if:

. the types are the same;

. one type is a subrange of the other
or they are both subranges of the
same type;

. both types are strings;

. one value is a string literal and
the other is a 'packed arrayll..nl
of CHAR';

. one value is a string literal of one

character and the other is a CHAR;

. they are set types with compatible
base types;

. or, they are both
'packed arrayll..n] of CHAR' with
the same number of elements.

Furthermore, any object which is of a

set type is compatible with the empty

set. And, any object which is a pointer
type is compatible with the value nil.

5.2.%4 Assignment Compatible Types

A value may be assigned to a variable if
the types are assignment compatible. An
expression E is said to be assignment
compatible with variable V if:

U the types are same type and neither
is a file type;

. V is of type REAL and E is compat-
ible with type INTEGER;

U V is a compatible subrange of E and
the value to be assigned is within
the allowable subrange of V;

. V and E have compatible set types
and all members of E are permissible
members of V; or,

. V is a 'packed arrayll..n] of CHAR'
and E is a string.

type

X = arrayl 1..10] of
INTEGER;
DAYS = (MON, TUES, WED, THURS,
FRI, SAT, SUN);
WEEKDAY = MON .. FRI;
var
A arrayl 1..10 1 of
INTEGER;
B : arrayl 1..10 1 of
c INTEGER;
b4
D : arrayl 1..10 1 of
CHAR;
E : X3
F : X3
W1l: DAYS;
W2: WEEKDAY

is compatible
with

Bkl T T S ——

1 Wl, W2
2 W2, W1

ZETMUOUOW>
m

Examples of Compatibility

Tvpes 33

5.3 THE ENUMERATED SCALAR

Syntax:

enumerated-scalar-tvpe:

—> ([>{id} >
A <

14

An enumerated scalar is formed by list-
ing each value that is permitted for a
variable of this type. Each value is an
identifier which is treated as a
self-defining constant. This allows a
meaningful name to be associated with
each value of a variable of the type.

type
DAYS = (MON, TUES, WED, THURS,
FRI, SAT, SUN);
MONTHS = (JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC):;
var
SHAPE (TRIANGLE, RECTANGLE,
SQUARE, CIRCLE);
REC : record
SUIT: (SPADE, HEART,
DIAMOND, CLUB);
WEEK*® DAYS
end;
MONTH MONTHS;

Enumerated Scalars

An enumerated scalar type definition
declares the identifiers in the enumer-
ation list as constants of the scalar

34 Pascals/VS Reference Manual

type being defined. The lexical scope
of the newly defined constants is the
same as that of any other identifier
declared explicitly at the same lexical
level.

These constants are ordered such that
the first value is less than the second,
the second less than the third and so
forth. In the first example, MON < TUES
< WED < ... < SUN. There is no value
less than the first or greater than the
last.

The following predefined functions
operate on expressions of a scalar type
(see the indicated section for more

details):
Function Paqge
ORD 125
MAX 129
MIN 129
PRED 130
sSUCC 130
LOWEST 122
HIGHEST 122
Notes:

1. Two enumerated scalar type defi-
nitions must not have any elements
of the same name in the same lexical
scope.

2. The standard type BOOLEAN is defined
as (FALSE, TRUE).

5.4 THE SUBRANGE SCALAR

TNL SN20-4446 (31 December 81) to SH20-6168-1

Syntax:

subrange-scalar-type:

——1---> packed T
b o = e
-———T———>{constant}———> . —>{constant-expr} >
L---> range --->{constant-expr}---> --=>{constant-expr}-~-->4

The subrange type is a subset of consec-
utive values of a previously defined
scalar ‘type. Any operation which is
permissible on a scalar type is also
permissible on any subrange of it.

A subrange is defined by specifying the
minimum and maximum values that will be
permitted for data declared with that
type. For subranges that are packed,

Pascal/VS will assign the smallest num-

ber of bytes required to represent a
value of that type.

If the reserved word range is used in
the subrange definition, then both the
minimum and maximum values may be any
expression that can be computed at com-
pile time. If the range prefix is not
employed then the minimum value of the
range must be a simple constant.

The following predefined functions
operate on expressions of a scalar type
(see the indicated section for more

details):
Function Page
ORD 126
MAX 130
MIN 130
PRED 131
SUcce 131
LOWEST 123
HIGHEST 123
Notes:

1. A subrange of the standard type REAL
is not permitted.

2. The number of values in a subrange
of type CHAR is determined by the
collating sequence of the EBCDIC
character set.

3. The lower bound of a subrange defi-
nition that is not prefixed with

'‘range' must be a simple constant
instead of a generalized constant
expression.

const
SIZE = 1000;
type
DAYS = (SU, MO, TU, WE,
TH, FR, SA);
MONTHS = (JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC);
UPPER_CASE = "A' ., '2';
ONE_HUNDRED = 0 .. 99;
CODES = ranae
CHR(0)..CHR(255);
INDEX = packed 1 SIZE+1;
var
WORK_DAY * MO .. FR;
SUMMER : JUN .. AUG;
SMALLINT packed 0..255;
YEAR 21900 2000;

Subrange Scalars

The following example illustrates that
tuwo subrange types may be defined over
the same base type. Operations are per-
mitted between these two variables
because they Have the same base tvpe.

var
NEG ? MININT .. -1;
POS 1 MAXINIT;

Subranges with the Same Base Type

Types 35

TNL SN20-4446 (31 December 81) to SH20-6168-1

5.5 PREDEFINED SCALAR TYPES

5.5.1 The Type INTEGER

The following table describes the oper-
ations and predefined functions that

apply to values which are the standard

tvpe INTEGER.

INTEGER
operation form description

+ unary returns the unchanged result of the operand

+ binary forms the sum of the operands

- unary negates the operand

- binary forms the difference of the operands

% binary forms the product of the operands

7/ binary converts the operands to REAL and produces

the REAL quotient
div binary forms the integer quotient of the operands
mod binary forms the integer modulus of the operands
(same as remainder if the arguments are positive)

= binary compares for equality

<> or == binary compares for inequality

< binary compares for less than

<= binary compares for less than or equal to

>z binary compares for greater than or equal to

> binary compares for greater than
+ - unary returns one's complement on the operand
+ | binary returns 'logical or' on the operands
+ & binary returns 'logical and' on the operands
+ && binary returns '"logical xor' on the operands
+ << binary returns the left operand value shifted
+ left by the right overand value
+ >> binary returns the left operand value shifted
+ right by the right operand value

CHR(x) function returns a CHAR whose EBCDIC representation is x

PRED(x) function returns x-1

SUCC(x) function returns x+1

0DD(x) function returns TRUE if x is odd and FALSE otherwise

ABS(x) function returns the absolute value of x

SQR(x) function returns the square of x
+ FLOAT(x) function returns a REAL whose value is x
+ MINC) function returns the minimum value of two or more operands
+ MAX() function returns the maximum value of two or more operands
+ LOWEST(x) function returns MININT or the minimum value of the range
+ if X is a subrange of INTEGER
+ HIGHEST(x)| function returns MAXINT or the maximum value of the range
+ if x is a subrange of INTEGER
+ SIZEOF(x) function returns the number of bkytes required for a value
| of the type of x, which is always 1, 2, 3, or 4%

The +type INTEGER is

provided a

pre-defined tvpe in Pascal/Vs.
type represents the subset of whole num-

bers as defined below:

ty

pe
INTEGER = MININT..MAXINT;

s a
This

where MININT is a predefinad INTEGER
constant whose value is -2147483643 and
MAXINT is a predefined INTEGER constant

36 Pascal/VS Reference Manual

whose value is 2147483647. That is, the
predefined type IHTEGER represents 32

bit values in 2's complement notation.

Type definitions representing integer
subranges may be prefixed with the
reserved word "packed". ' For variables
declared with such a type, Pascals/V$s
will assigh the smallest number of bytes
required to represent a value of that
tvpe. The following table defines the

number of bytes required for different
ranges of integers. For ranges other
than those listed, use the first range
that encloses the desired range. Given
a type definition T as:

typa T = packed i..3;

Range of Size in{Alignment
Poee 3 bytes
0..255 1 BYTE
~128..127 1 BYTE
~32768..32767 2 HALFWORD
. 0..65535 2 HALFWORD
-8388608..8388607 3 BYTE
0..16777215 3 BYTE
otherwise 4 FULLWORD

TNL SN20-4446 (31 December 81) to SH20-6168-1

Notes:

1. The operations of div and mod are
defined as:

A div B

TRUNCC(A/B), B<>0

A mod B = A-BX(A div B), A>=0,B>0
A mod B = B-abs(A) mod B, A<0,B>0

B=0 when doing a div operation or
B<=0 when doing a mod operation
is defined as an error and will
cause a runtime error message to
be produced.

2. The following operators
logical oparations:

<< shift left logical
>> shift right logical
- 1's complement

| logical inclusive or
& logical and

&& logical exclusive or

perform

The operands are treated as unsigned
strings of binary digits. See "Logical
Expressions"™ on page 78 for more details
on logical expressions.

Types 37

O A A S

TNL SN20-4446 (31 December 81).to. SH20-6168-1

5.5.2 _Tha Type CHAR

The following table describes the oper-
ations and predefined functions that
apply to the standard type CHAR.

CHAR
operation form description

= binary compares for equality

<> or == binary compares for inequality

< binary compares for left less than right

<= binary compares for left less than or equal to right

>= binary comparaes for left greater than or equal to right

> binary compares for left greater than right

ORD(x) function converts operand to an INTEGER based on ordering
sequence of underlying character set.

PRED(x) function returns the preceding character
in collating sequence

SUCC(x) function returns the succeeding character
in collating sequence

STR(x) function converts the operand to a STRING

MINC) function returns the minimum value of two or more operands

MAX() function returns the maximum value of two or more operands

LOWEST(x) function returns the minimum value of the range of the
character x

HIGHEST(x)| function returns the maximum value of the range of the
character x

SIZEOQOF(x) function returns the number of bytes required for a value
of the type of a CHAR, which is always 1

CHAR is a scalar type that consists of variable C to the EBCDIC code for the
all of the values of the EBCDIC charac- letter A.

ter set. Variables of this type occupy

ohe byte of memory and will be aligned var C: CHAR;

on a byte boundary. begin

A single-character string constant will C = "AY;

be regarded as a CHAR constant if the .o

context so dictates. For example, the end

assignment statement shown below sets

38 Pascal/VS Reference Manual

5.5.3 The Type BOOLEAN

The following table describes the oper-

ations

apply to the standard type BOOLEAN.

and predefined functions that

TNL SN20-4

446 (31 December 81) to SH20-6168-1

BOOLEAN
operation form description
- unary returns TRUE if the operand is FALSE,
otherwise it returns FALSE
& binary returns TRUE if both operands are TRUE
| binary returns TRUE if either operand is TRUE
+ && binary returns TRUE if =2ither, but not both operands are TRUE
= binary compares for equality
<> or == binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right
ORD(x) function returns 0 if x is FALSE and 1 if x is TRUE
+ MINC) function returns TRUE if all operands are TRUE
+ MAX() function returns FALSE if all operands are FALSE
+ LOWEST(x) function returns the FALSE by definition
+ HIGHEST(x)| function returns the TRUE by definition
+ SIZEQF(x) function returns the number of bytes required for a value
+ of the type of a BOOLEAN, which is always 1

Binary Operations on BOOLEAN

FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE Name
= TRUE FALSE FALSE TRUE Equivalence
<> FALSE TRUE TRUE FALSE Exclusive Or
< FALSE TRUE FALSE FALSE
<= TRUE TRUE FALSE TRUE Implication
>= TRUE FALSE TRUE TRUE
> FALSE FALSE TRUE FALSE
& FALSE FALSE FALSE TRUE And
| FALSE TRUE TRUE TRUE Inclusive Or
&& FALSE TRUE TRUE FALSE Exclusive Or

The type BOOLEAN is defined as a scalar
whose values are FALSE and TRUE as
though declared with the following tvpe
declaration:

type
BOOLEAN=(FALSE,TRUE);

Variables of this type will occupy one
byte of memory and will aligned on a
byte boundary. The relational operators

form valid boolean functions as shown in
the table of binary operations.

Pascal/VS will optimize the evaluation
of BOOLEAN expressions involving '&!
(and) and '|' (or) such that the right
operand expression will not be evaluated
if the result of the operation can be
determined by evaluating the left oper-
and. For more details see '"Boolean
Expressions” on page 77.

Tvpes 39

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ + + +

5.5.% _The Type REAL

The following table describes the oper-

ations

apply to the standard type REAL.

and predefined functions that

REAL
operation form description
+ unary returns the value of the operand
+ binary forms the sum of the overands
- unary negates the operand
- binary forms the difference of the operands
% binary forms the product of the operands
/ binary forms the REAL quotient of the operands
= binary compares for equality
<> or -= binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right
TRUNC(x) function returns the operand value truncated to an INTEGER
ROUND(x) function returns the operand velue rounded to an INTEGER
ABS(x) function returns the absolute value of the operand
SIN(x) function returns the trigonometric sine of x (in radians)
C0S(x) function returns the trigonomatric cosine of x (in radians)
ARCTAN(x) function returns (in radians) the arc tangent of x
LMN(x) function returns the natural logarithm of x
EXP(x) function returns natural log base raised to the x power
SQRT(x) function returns square root of x
SQR(x) function returns the square of x
MINC) function returns the minimum value of the operands
MAX() function returns the maximum value of the operands
SIZEOF(x) function returns the number of bytes required for a value
of the type of a REAL, which is always 8

The tvpe REAL represents floating point
data. Variables of this type will occu-
py eight bytes of memo~y and will be
aligned on a double wmord boundary. All
REAL arithmetic is done using double
precision floating point. See "Implicit
Tvpe Conversion" on page 31.

%0 Pascal/VS Reference Manual

The type REAlL has restrictions that oth-
er scalar types do not have. You may
not take a subrange of REAL nor index an
array by REAL. The predefined functions
SUCC, PRED, ORD, HIGHEST and LOWEST are
not defined for tvpe REAL.

5.5.5 The Type SHORTREAL

The following table describes the oper-
ations and predefined functions that
apply to the standard type SHORTREAL.

SHORTREAL
operation form description
+ unary returns the value of the operand
+ binary forms the sum of the operands
- uhary negates the operand
- binary forms the difference of the operands
* binary forms the product of the operands
/ binary forms the SHORTREAL quotient of the operands
= binary compares for equality
<> or == binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right
TRUNC(x) function returns the operand value truncated to an INTEGER
ROUND(x) function returns the operand value rounded to an INTEGER
ABS(x) function returns the absolute value of the operand
SIN(x) function returns the trigonometric sine of x (in radians)
C0S(x) function returns the trigonometric cosine of x (in radians)
ARCTAN(x) function returns (in radians) the arc tangent of x
LN(x) function returns the natural logarithm of x
EXP(x) function returns natural log base raised to the x pouwer
SQRT(x) function returns square root of x
SQR(x) function returns the square of x
MIN() function returns the minimum value of the operands
MAX() function returns the maximum value of the operands
SIZEOF(x) function returns the number of bytes required for a value
of the type of a SHORTREAL, which is always %

The type SHORTREAL represents floating
point data. Variables of this type will
occupy four bytes of memory and will be
aligned on a word boundary. All
SHORTREAL arithmetic is done using sin-
ale precision floating point
instructions.

Operations between data of type REAL and
SHORTREAL will be performed using double
praecision floating point instructions.
The SHORTREAL operand will be implicitly
converted to a value of type REAL. A
SHORTREAL may be passed as an operand to

a function or procedure that expects its
parameter to be of type REAL if the
parameter passing mechanism for that
parameter is value or const. See "Im-
plicit Type Conversion" on page 31.

The type SHORTREAL has restrictions that
other scalar types do not have. You may
not take a subrange of SHORTREAL nor
index an array by SHORTREAL. The prede-
fined functions SUCC, PRED, ORD, HIGHEST
and LOWEST are not defined for type
SHORTREAL.

Types 41

5.6 THE ARRAY TYPE

Svyntax:

array-type:

—1—> packed —
-<

index-type:

—> {enumerated-scalar-type}—>

—————> array [———t———>{index—type}————T——~>] of —>{type} —8M8>
y < , X

——> {subrange-scalar-typel}

—1+—>{id!scalar~typel}]
>

The array type defines a list of homoge-
neous elements; each element is paired
with one value of the index. An element
of the array is selected by a subscript.
The number of elements in the array is
the number of values potentially
assumable by the index. Each element of
the array is of the same type, which is
called the element type of the array.
Entire arrays may be assigned if they
are of the same type.

Pascals/VS uses square brackets, '[' and
'], in the declaration of arrays.
Because these symbols are not directly
available on many 1/0 devices, the sym-
bols '(.' and '.)' may be used as an
equivalent to square brackets.

Pascals/VS will align each element of the
array, if necessary, to make each ele-
ment fall on an appropriate boundary. A
packed array will not observe the bound-
ary reaquirements of its elements. Ele-
ments of packed arrays may not be passed
as var parameters to routines.

An array which is defined with more than
one index is said to be a
multi-dimensional array. A

multi-dimensional array is exactly
equivalent to an array of arrays. In
short, an array definition of the form

arrayli,j,. Jof T

is an abbreviated form of
arraylil of
arrayljl of
e T

where i and j are scalar type defi-
nitions. Thus, the first and second
type declarations in the example below
are alternatives to the same structure.

42 Pascal/VS Reference Manual

type

MATRIX = arrayl 1..16, 1..10] of
REAL;

MATRIX0 = arrayl 1..10] of
arrayl 1..10 1 of
REAL;

ABLE = array[BOOLEAN] of INTEGER;

COLOR = (RED, YELLOW, BLUE);
INTENSITY = packed array[COLOR]
of REAL;
ALFA = packed arrayl 1..ALFALEN] of
CHAR;

Examples of Array Declarations

There are two procedures available for
conversion between a packed array and a
similar but unpacked array. The prede-
fined procedures PACK (see "PACK Proce-
dure” on page 121) and UNPACK (see
"UNPACK Procedure"™ on page 121) are pro-
vidaed for this purpose.

5.6.1 Array Subscripting

Array subscripting is performed by plac-
ing an expression in square brackets
following an array variable. The
expression must be of a type that is
compatible with the index type and eval-
uate to one of the values of the index.
See "Compatible Types" on page 32 The
igdex may be any scalar type except
REAL.

var

M ¢ MATRIX;
HUE ¢ INTENSITY;
begin

{ assign ten element array }
ML13} t= ML2];

{ assign one element of a two }
{ dimensional array two ways }

M[1,1] 1= 3.14159;
M[l][l] = 3.14159;
{ this is a reddish orange }
HUELRED] =0.7;
HUELYELLOW] =0.3;
HUELBLUE] = 0.0;

end

Examples of Array Indexing

Tvpes 43

5.7 THE RECORD TYPE

Syntax:
record-type:
> record —>{field-list}—> end >
L packed —->-I
field-1list:
———T———>{fixed-part} I > ; >{variant-part} >1 > 3 >
N -]
fixed-part:
>{field} > >{typel >
l | L , — |
e e e - >d
< ;3 <
variant-part:
. [C~""TIToIIoIITOC 4
—> > > > > —
case — 1 {field} >] {id:typel of]
<
>(range}——"T*——> (———T-—>{field—llst} >) >
< , < >J
< ; <
field:
-—-> (=~==->{constant-exprl}--->) --->
range:
——>{constant-axpr} [T >
- --=->{constant-expr}--->
A record is a data structure which is used as names is the record type itself.
composed of heterogeneous components; That is, every field name within a
each element may be of a different type. record must be unique, even if that name
Components of a record are called appears in a variant part.
fields.
+ A field of a record need not be named;
+ that is, the field identifier may be
. . + missing. In such a case, the field only
5.7.1 MNaming of a Field + serves as padding; it can not be refer-
+ enced.
A field is referred to by the name of
the field. The scope of the identifiers
44 Pascal/VS Reference Manual

+ 4+ ++F

type
REC = record
B : INTEGER;
: CHAR;
C : CHAR
end;

{unnamed}

DATE = record
DAY :
MONTH
YEAR
end;

..31;
.12;
900..2100

= s
.

PERSON = record
LAST_NAME,
FIRST_NAME
MIDDLE_INITIAL
AGE
EMPLOYED
end;

ALFA;
CHAR;
0..99;
BOOLEAN

Simple Record Decla-ations

5.7.2 Fixed Part

The fixed part of a record is a series
of fields that exist in every variable
that is declared to be of that record
type. The fixed part, if present, is
always khefore the variant part.

5.7.3 variant Part

The variant part of a record permits the
defining of an alternative structure to
the record. The record structure adopts
one of the variants at a time.

The variant part of a record is denoted
with the case symbol. A tag field iden-
tifier may follow. This field is a sca-
lar value that indicates which variant
is intended to be active.

The tag field is a field in the fixed
part of the record. When the tag field
is followed by a type identifier, then
the tag field defines a new field within
the reccrd.

If the type identifier is missing, then
the tag field name must be one which was
previously defined within the record.
This allows you to place the tag field
anywhere in the fixed part of the
racord.

A variant part of a record need not have
a tag field at all. In this case, only a
type identifier is specified in the case

TNL SN20-4446 (31 December 81) to SH20-6168-1

construct. You still refer to the vari-
ant fields by their names but it is your
responsibility to keep track of which
variant is 'active' (i.e. contains valid
data) during execution.

In short, taa fieclds may be defined in
tha following ways:

L "case 1 INTEGER ©f" results in I
being a tag Tield of type INTEGER.

. "case INTEGER of" means no tag field
is present, the variants are denoted
by integer values 1in the variant
declaration.

. "case I: of" means that I is the tag
field and it must have been declared
in the fixad part, the type of I is
as given in the field definition of
I.

illustrate the
complete record

The following examples
three tag fields in
definitions.

typea

SHAPE = (TRIANGLE,

SQUARE,
COORDINATES =

RECTANGLE,
CIRCLE);

{ fixed part: }

REAL;
REAL;
SHAPE of
{ variant part: 1}

record
X,Y
AREA
case S

TRIANGLE:
(SIDE
BASE

RECTANGLE:
(SIDEA,SIDEB

SQUARE:
(EDGE

CIRCLE:
(RADIUS

REAL;
REAL);

REAL);
REAL);
REAL)

end;

A Record With a Variant Part

The record defined as COORDINATES in the
example above contains a variant part.
The tag field is S, its type is SHAPE,
and its value (whether TRIANGLE, RECTAN-
GLE, SQUARE, or CIRCLE) indicates which
variant is in effect. The fields SIDE,
SIDEA, EDGE, and RADIUS would all occupy
the same offset within the record. The
following diagram illustrates how the
record would look in storage.

Types 45

TNL SN20-4446 (31 December 81) to SH20-6168-1

B T T T o e ok o STt T ST S O Tl S S A S

fixed part:

AREA
tag field: S

variant part:
SIDE SIDEA
BASE SIDEB

EDGE

RADIUS

Each column in the variant represents
one alternative for the variant.

If vou preferred the tag field to be the
first field instead of the fourth, you
could define it as follows:

COORDINATES =
record
S SHAPE;
REAL;
REAL;
of
{ variant part: }

REAL;
REAL);

X, Y
AREA
case S

TRIANGLE:
(SIDE
BASE

RECTANGLE:
(SIDEA,SIDEB

SQUARE:
(EDGE

CIRCLE:
(RADIUS

REAL);

REAL);

REAL)
end;

Record with Back Reference
Tag Field

If you preferred the tag field to be
absent altogether you could define the
record as follows:

46 Pascals/V5S Reference Manual

IR AR T S R U A A

COORDINATES =
record
X, Y REAL;
AREA REAL;
case SHAPE of
{ variant part: }
TRIANGLE:
(SIDE : REAL;
BASE REAL);
RECTANGLE:
(SIDEA,SIDEB REAL)Y;
SQUARE:
(EDGE REAL);
CIRCLE:
(RADIUS REAL)
end;

Record Variant with No Tag Field

5.7.4%4 Packed Records

The fields in a record are normally
assighed offsets sequentially, padding
where necessary for boundary alignment.
In packed records, however, no such pad-

ding is done. This may save storage
within the record, but may dagrade per-
formance of the program. Fields of

packed records may not be passed as var
parameters to a routine.

5.7.5 O0ffset Qualification nf Fislds

Pascal/VS provides you a method of forc-
ing the fields of a record to begin at a
specified byte offset in the record. A
field name may be followzd by a integer
constant expression enclosed in paren-
theses which represents the byte offset
within the record that the field is to
represent. All fields so specified must
be in consecutive order according to
offsets. If the ocffset is not
specified, the field will be assigned
the next offset that is required for
boundary alignment. If an offset spec-
ification attempts to assign an
incorrect boundary for a field and the
record is not packed, a compile time
error will be raised.

As an example of offset qualified fields
within a record, considmr a large con-
trol block of 100 bytes, in which four
fields at various offsets need to be
referenced.

+ 4+t

R e i T I N Spin AR R

byte

displacement information
0 field A (integer)
36 field B (8 chars)
80 field C (4 flags)
92 field D (integoer)

The control block might be represented
in Pascals/VS as follows:

L3

type
FLAGS = set of
(F1,F2,F3,F4);
PADDING = packed arrayll..4]1 of
CHAR;
CB = packed record
A ¢ INTEGER;
B(36) : ALFA;
C(80) : FLAGS;
D(9%2) : INTEGER;
¢ PADDING
end;
var

BLOCK : CB;

A Record with Offset Qualified
Fields

Tvpes

47

+ + +

5.8 THE SET TYPE

Svyntax:
set-tvpe:
> set of —>{base-scalar-typel >
L—--——> packed ———-:>-|
base-scalar—-type:
'———>(enumerated-scalar-type}———>1
—t—>{id!scalar-type} \J >
>{subrange-scalar-typel >

A variable whose type is a set may con-
tain any combination of values taken
from the base scalar tvpe. A value is
either in the set or it is not in.

Note: Pascal’/VS sets can be used in many
of the same ways as bit strings (which
often tend to be machine dependent).
Each bit corresponds to one element of
the base type and is set to a binary one
when that element is a member of the
set. For example, a set operation such
as intersection (the operator is "¥') is
the same as taking the 'boolean and' of
two bit strings.

type
CHARS = sat of CHAR;
DAYSOFMON = packed set of 1..31;
DAYSOFWEEK = set of MONDAY..FRIDAY;
FLAGS = sat of
(A,B,C,D,E,F,G,H);

Set Declarations

The following table describes the oper-
ations that apply to the variables of a
set type.

Set Operators
operation form description

- unary returns the complement of the operand

= binary compares for equality

<> or -= binary compares for inequality

<= binary returns TRUE if first operand is subset of
second operand

> binary returns TRUE if first operand is superset of
second operand .

in binary TRUE if first operand (a scalar) is a member in
the set represented by the second operand

+ binary forms the union of two sets

% binary forms the intersection of two sets

- binary forms the difference between two sets

&& binary forms an 'exclusive' union of two sets

SIZEOF(x) function returns the number of bytes required for a value
of the type of x

Set union produces a set which contains
all of the elements which are members of
the two operands. Set intersection
produces the set that contains only the
elements common to both sets. Set dif-
ference produces the set which includes
all elements from the left operand
except those elements which are members
of the right operand. Set exclusive
union produces the set which contains
all elements from the two operands
except the elements which are common to

48 Pascal/VS Reference Manual

both operands. The in operator tests
for membership of a scalar within a set;
if the scalar is not a permissible value
of the set and checking is enabled, then
a runtime diagnostic will result.

The storage and alignment required for a
set variable is dependent on the scalar
type on wWhich the set is based. The
amount of storage required for a packed
set will be the minimum number of bytes

| needed so that every member of the set

| may be assigned to a unique bit.

Given
a set definition:

type S = set of BASE;

where BASE is a scalar type which is
not a subrange

the ordinal value of the last member M
which can be contained on the set is:

M := ORD(HIGHEST(BASE))

The following table indicates the map-
ping of a set variable as a function of

-

Range of Size in Alignment
M Bytes
0 <=M <=7 1 BYTE
8 <= M <= 15 2 HALFWORD
16 <= M <= 23 3 BYTE
2¢ <= M <= 31 4 FULLWORD
32 <= M <= 255 (M+7) BYTE
div 8

Unpacked sets based upon integer (or
subranges of integers) will occupy 32
bytes. The maximum value of a member of
a set of integer may not exceed 255.

The storage is the same for all unpacked
sets of subranges of a base scalar tvpe.
The following illustrates this point.

Given:
typea

T = set of t;

S = set of s;
Where:

t is a subrange of s.

The types T and S have identical storage
mappings.

Types 49

5.9 THE FILE TYPE

Syntax:
file-type:
—> file of —>{typel} >
All input and output in Pascal/VS use . RESET (see "RESET Procedure"”™ on page

the file type. A file is a structure
consisting of a sequence of components
where each component is of the same
type. Variables of this type reference
the components with pointers called file
pointers. A file pointer could be
thought of as a pointer into an
input/output buffer.

The association of a file variable to an
actual file of the system is implementa-
tion dependent and will not be described
in this manual. Refer to the Program-
mer's Guide for this information.

tyre
TEXT = fila of CHAR;
LINE = file of
packed arrayll..801 of
CHAR;
PFILE = file of
record

NAME: packed
arrayll..25]1 of
CHAR;
PERSON_NO: INTEGER;
DATE_EMPLOYED:DATE;
gEEKLY_SALARY INTEGER
end;

File Declarations

You access the file through predefined

procedures and functions (see "I/0

Facilities"™ on page 103). They are:

. GET (see "GET Procedure™ on page
107)

. PUT (see "PUT Procedure™ on page
103)

. EOF (see "EOF Function™ on page 109)

. EOLN (see "EOLN function" on page
115)
50 Pascal/VS Reference Manual

A A

103)

. REWRITE (see "REWRITE Procedure"™ on
page 104)

. READ (see "“READ and READLN (TEXT

Files)"™ on page 109)

. WRITE (see "WRITE and
Files)™ on page 112)

WRITELN (TEXT

. TERMIN (see "TERMIN Procedure™ on
page 104)

L TERMOUT (see "TERMOUT Procedure™ on
page 105)

. PDSIN (see "PDSIN Procedure™ on page
105)

. PDSOUT (see "PDSOUT Procedure™ on
page 106)

. UPDATE (see "“UPDATE Procedure"™ on
page 106)

. SEEK (see "SEEK Procedure™ on page
108)

. COLS (see "COLS Function"™ on page
116)

. PAGE (see "“PAGE Procedure"™ on page
115)

L CLOSE (see "CLOSE Procedure"™ on page
107)

QUTPUT and INPUT are predefined TEXT
files. Pascal/VS enforces the following
restrictions on the file type:

1. A file may be passed by var or
passed by const, but never by value
to a procedure or function.

2. A file may not be contained within a
file.

i a2 T A A R A MR T R Tk R I O N A A S S R R SRR

LI I S T A R R SN A RS

+ +

5.10 PREDEFINED STRUCTURE TYPES

5.10.1 The Type STRING

TNL SN20-4446 (31 December 81) to SH20-6168-1

Syntax:

string—-type:

--=> STRING ——-I---> (-=->{constant-expr}--->) I [ttt >
___________________________________ >

The type STRING is defined as a
‘packed arrayll..nl of CHAR?' whose
length varies at execution time up to a
compile time specified maximum. The
length of the array is obtained during
execution by the LENGTH function (see
"LENGTH Function™ on page 137). The

length 1is managed implicitly by the
operators and functions which apply to
STRINGs, The maximum length of " the
array is obtained during execution by

the MAXLENGTH function (see "MAXLENGTH
Function" on page 137). The length of a
STRING variable is determined when the
variable is assigned. By definition,
string constants belong to the type
STRING.

A STRING variable may be subscripted
with an integer expression to reference
individual characters. A subscript of 1
will reference the first character. The
subscript value must not be less than 1
nor exceed the string's length.

The constant expression which follows
the STRING qualifier in the type defi-
nition is the maximum length that the
string may obtain and must be in the
range of "1 .. 32767"'.

Any variable of a STRING type is compat-
ible with any other variable of a STRING
type; that is, the maximum length field
of a type definition has no bearing in
type compatibility tests.

Implicit conversion is performed when
assigning a STRING to a variable whose
type is 'packed arrayll..n] of CHAR'.
All other conversion must be done
explicitly.

I T I A IR b i T 2 b T 2 2 ok ek b T T T T N SV RO A R aS

+ + +

Thae assignment of one string to another
may cause a run time error if the actual
length of the source string is greater
then the maximum length of the target.
Pascal/VS will never truncate implicit-
ly.

function GETCHAR(
const S
IDX

STRING;
INTEGER) CHAR;
begin
{ Subscripted string variable }
GETCHAR := S[IDX]

end;

var

S1: STRING(10);

52: STRING(5);
C: CHAR;
begin
S1 := "MESSAGE:"';
C := GETCHAR(S1,4);
{ C assigned 'S"' }
2 := 'FIVE';
C := GETCHAR(S2,2);
{ C assighed 'I' }
end;

Usage of STRING Variables

The following table describes the oper-
ations and predefined functions that
apply to the variables of type STRING.

Types 51

TNL SN20-4446 (31 December 81) to SH20-6168-1

+

+ STRING

+

+ operation form description

+

+ = binary compares for equalityX

+ <> or == binary compares for inequalityX

+ < binary compares for left less than right+¥%

+ <= binary compares for left less than or equal to right+x
+ >= binary compares for left greater than or equal to right+x
+ > binary compares for left greater than right+x

+ | binary catenates the operands

+ LENGTH function returns the length of the STRING

+ (see "LENGTH Function" on page 137).

+ MAXLENGTH function returns the declared length of a STRING

+ (see "MAXLENGTH Function" on page 137).

+ LBOUND function returns the value 1, STRINGS always have a lower
+ bound of one (see "LBOUND Function™ on page 124).
+ HBOUND function returns the declared maximum number of elements of
+ the string (see "HBOUND Function™ on page 124).
+ SUBSTR function returns a specified portion of a STRING

+ (see "SUBSTR Function"™ on page 138).

+ DELETE function returns a STRING with a portion removed

+ (see "DELETE Function” on page 138).

+ TRIM function returns a STRING with trailing blanks removed

+ (see "TRIM Function"™ on page 139).

+ LTRIM function returns a STRING with leading blanks removed

+ (see "LTRIM Function™ on page 139).

+ COMPRESS function returns a STRING with multiple blanks removed

+ (see "COMPRESS Function" on page 140).

+ INDEX function locates a STRING in another STRING

+ (see "INDEX Function" on page 140).

+ SIZEOF(x) function returns the number of bytes required for a value
+ of the type of x

+ READSTR procedure| converts a STRING to values by assigning variables
+ (see "READSTR"™ on page 142).

+ WRITESTR procedure| produces a STRING by converting the internal

+ values of a list of expressions

+ (see "WRITESTR" on page 142).

+

+

+ % IFf two STRINGs being compared are of different lengths, the

+ shorter is assumed to be padded with blanks on the right

+ until the lengths match.

+ + Relative magnitude of two strings is based upon the collating

+ sequence of EBCDIC.

+

+

STRING Conversions with Relational Operators

RIGHT OPERAND

B A T T s s . o O

OZ»>0MUVO ~Tmr

packad
relational arrayll..nl of
operations CHAR CHAR STRING
CHAR allowed not permitted use STR on

packed
arrayll..n] of
CHAR

STRING

not permitted

use STR on
the CHAR

okay if the
types are
compatible

use STR on
the array

the CHAR

use STR on
the array

allowed

52

Pascals/VS Reference Manual

I T a kb I R A T A R SR U SR

STRING Conversions on Assignment

T

FROM
packed
arrayll..nl of
_assignment CHAR CHAR STRING
CHAR allowed not permitted use string

packed
arrayll..nl] of
CHAR

STRING

not permitted

use STR to
convert CHAR
to a STRING

okay if the
types are
compatible

use STR to
convert array
to a STRING

indexing to
obtain char

okay, STRING is
converted. If
truncation is
required, then
an error results.

allowed

Types

53

T R

B T A R

5.10.2 The Type ALFA
The standard type ALFA is defined as: + Any *packed arrayll..nl of CHAR',
+ including ALFA, may be converted to type
const + STRING by the predefined function STR.
ALFALEN = 8; + The following table describes the oper-
+ ations and predefined functions that
type + apply to the variables of the predefined
ALFA = packed + type ALFA.
arrayll..ALFALEN] of
CHAR;
ALFA
operation form description
= binary compares for equality
<> or == binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right
STR(x) function converts the ALFA to a STRING
SIZEOF(x) function returns the number of bytes required for a value
of the type of an ALFA, which is always 8
54 Pascal/VS Reference Manual

B R T R T A A A PR A MR

LR R R R R R R iy

5.10.3 The Type ALPHA

The standard type ALPHA is defined as: + Any 'packed arrayil..nl of CHAR?',
+ including ALPHA, may be converted to

const + type STRING by the predefined function

ALPHALEN = 16; + STR. The following table describes the

+ operations and predefined functions

type + that apply to the variables of the pre-

ALPHA = packed + defined type ALPHA.

arrayll..ALPHALEN] of
CHAR;
ALPHA
operation form description

= binary compares for equality

<> or == binary compares for inequality

< binary compares for left less than right

<= binary compares for left less than or equal to right

>= binary compares for left greater than or equal to right

> binary compares for left greater than right

STRIx) function converts the ALPHA to a STRING

SIZEOF(x) function returns the number of bytes required for a value

of the tvpe of an ALPHA, which is always 16

Tvpes 55

5.10.%_ The Type TEXT

The standard type TEXT is defined as:

type

TEXT = file of CHAR;

In addition to the predefined procedures
to do input and output, Pascal/V$
defines several procedures which oper-

ate only on files of type TEXT. These
procedures perform character to
internal representation (EBCDIC) con-

versions and gives you some control over
output field lengths. The predefined
routines that may be used on TEXT files
are:

L GET ("GET Procedure"™ on page 107)

. PUT ("PUT Procedure™ on page 108)

. EOQOF ("EOF Function" on page 109)

. EOLN ("EOLN function™ on page 115)

. RESET ("RESET Procedure" on page
103)

L REWRITE ("REWRITE Procedure”" on
page 106)

. READ ("READ and READLN (TEXT Files)"
on page 109)

U READLN ("READ and
Files)"™ on page 109)

READLN (TEXT

56 PascalsVS Reference Manual

+ + o+

. WRITE ("WRITE and WRITELN (TEXT

Files)™ on page 112)

. WRITELN ("™WRITE and WRITELN (TEXT
Files)" on page 112)

. PAGE ("PAGE Procedure”™ on page 115)

L CLOSE ("CLOSE Procedure"
107)

. COLS ("COLS Function™ on page 116)

on page

. PDSIN ("PDSIN Procedure"™ on page
105)

. PDSOUT ("PDSOUT Procedure" on page
106)

. TERMIN ("TERMIN Procedure"™ on page
104)

L TERMOUT ("TERMOUT Procedure"™ on
page 105)

o UPDATE ("UPDATE Procedure”™ on page
106)

Pascals/VS predefines two TEXT variables
named OUTPUT and INPUT. You may use
these files without declaring them in
your program.

L

5.11 THE POINTER TYPE

Svyntax:

pointer-type:

—> 3 —>{id: type}

Pascal/VS allows variables to be created
during program execution under vour
explicit control. These variables,
which are called dynamic variables, are
generated by the predefined procedure
NEW. NEW creates a new variable of the
appropriate type and assigns its address
to the argument of NEW. You must
explicitly deallocate a dynamic vari-
able; the predefined procedures DISPOSE
and RELEASE are provided for this pur-
pose.

Dynamic variables are created in an area
of storage called a heap. A new heap is
created with the MARK predefined proce-
dure; a heap is released with the
RELEASE predefined procedure. A initial
heap 1is allocated by Pascals/Vvs. All
variables that were allocated in a heap
are deallocated when the heap is
released. An attempt to use a dynamic
variable that has been deallocated (ei-
ther via DISPOSE or RELEASE) is an
error.

Pascal/V¥S pointers are constrained to
point to a particular type. This means
that on declaration of a pointer, you
must specify the type of the dynamic
variable that will be generated by NEW
or referenced.

Pascals/VS defines the named constant nil
as the value of a pointer which does not
point to any dynamic variable (empty
pointer). Nil is type compatible to
avery pointer type.

The only operators that can be applied
to variables of pointer type are the

test for equality and inequality. The
predefined function ORD may be applied
to a pointer variable; the result of the
function is an integer value which is
equal to the address of the dynamic var-
iable referenced by the pointer. There
is no function in Pascals/VS to convert
an integer into a pointer.

type
PTR = @ ELEMENT;
ELEMENT = record
PARENT :
CHILD :
SIBLING:
end;

PTR;
PTR;
PTR

A Pointer Declaration

This example illustrates a data types
that can be used to build a tree. With
this structure the parent node contains
a pointer to the eldest child, the
eldest points to the next sibling who
points to the next, and so forth.

In the above example type ELEMENT was
used before it was declared. Referenc-
ing an identifier prior to its declara-
tion 1is generally not permitted in
Pascals/VS. However, a type identifier
which is used as the base type to a
pointer declaration is an exception to
this rule.

Types 57

5.12 THE TYPE STRINGPTR

Variables of type STRING have two
lengths associated with them:

. The current length which defines the
number of characters in the string
at any instant in time.

L The maximum length which defines the
storage required for the string.

The predefined type STRINGPTR defines a
pointer to a string which has no "maxi-
mum length" associated with it until
execution time. The procedure NEW is
used to allocate storage for this type
of pointer; an integer expression is
passed to the procedure that specifies
the maximum length of the allocated
string. See "NEW Procedure" on page
119,

58 Pascal/VS Reference Manual

var
P ¢ STRINGPTR;
Q : STRINGPTR;
I 2 0..32767;
begin
I :=59;

NEW(P, (I+1) div 2);
WRITELNC MAXLENGTH(P));
{writes '30' to output 1}
NEW(Q,5);
Qd = '1234567890"';
{causes a truncation }
{error at execution }
end

Using the Predefined type STRINGPTR

5.13 GTORAGE, PACKING, AND ALIGNMENT

For each variable declared with a par-
ticular type, Pascal/VS allocates a spe-
cific amount of storage on a specific
alignment boundary. The Programmer's
Guide describes implementation
requirements and defaults.

Pascal/VS provides the packed record
feature in which all boundary alignment

is suppressed. Fields of a packed
record are allocated on the next byte,
ignoring alignment requirements.

Packed data occupies less space and is
more compact but may increase the exe-
cution time of the program. Moreover, a
field of a packed record or an element
of a packed array may not be passed by
read/write reference (var) to a routine.

Types 59

+ 4+t

6.0 ROUTINES

Syntax:

routine-decl:

———[———>Cprocedure—heading}

—>{function-heading}

function—-heading:

directive:

r< ; <

F——>{directivel} > >

H<

——-~-—->(clet:l::n‘a'cion}—----—>-I

~-——>{compound-statement} > 3 >
procedure-heading:
—> procedure —>{id}—>{formal-parameters} >

—> function —>{id}—>{formal-parametaers}—> :

—>{id:type}——ou0n0n>

formal-parameters:

——> FORWARD > >
Fm==> EXTERNAL === e e e o o oo e e >
== > FORTRAN === = oo o e e e >
o= => MAIN === m e o e e e e >
b= => REENTRANT === m oo m o e >

> ([>{formal}l T > >
< ; < J
>
formai:
> var {id} > 3 >{id:typel >
F~--~> const --> Le— , <—d
>4
———>{procedure-heading} >
——>{function~-heading} >

There are two categories of routines:
procedures and functions. Procedures
should be thought of as adding new
statements to the language. These new
statements effectively increase the
language to a superset language contain-

flexibility of the language: functions
add to your ability to express data
transformation in expressions.

Routines can return data to the caller
by altering the var parameters or by

ing statements tailored to vour assigning to variables that are common
specialized needs. Functions should to both the invoker and the invoked rou-
also be thought of as increasing the tine. In addition, functions also

Routines 61

return a value to the invoker

raturn from the function.

upon

6.1 ROUTINE DECLARATION

Routines must be declared prior to their
use. The routine declaration consists
of the routine heading, declarations and
one compound statement.

The heading defines the name of the rou-
tine and binds the formal parameters to
the routine. The heading of a function
declaration also binds the function name
to the type of value returned by the
function. Formal parameters specify
data that is to be passed to the routine
when it is invoked. The declarations
are described in chapter 4. The com-
pound statement will be executed when
the routine is invoked.

6.2 ROUTINE PARAMETERS

Formal parameters are bound to the rou-
tine when the routine is defined. The
formal parameters define what kind of
data may be passed to the routine when
it is invoked. These parameters also
specify how the data will be passed.

When the routine is invoked, a parameter
list is built. At the point of invoca-

tion the parameters are called the actu-

al parameters.

Pascal/Vs permits parameters to be

passed in following ways:
. pass by value
. pass by read/write reference (var)

. pass by read only reference (const)

L pass by conformant string (var or
const)

L formal routine parameter

6.2.1 Pass by Value Paramaters

Pass by value parameters can be thought
of as local variables that are initial-
ized by the caller. The called routine
may change the value of this kind of
parameter but the change 1is5 never
reflected back to the caller. Any
expression, variable or constant (ex-
cept of file type) may be passed with
this mechanism.

62 Pascal/VS Reference Manual

R R T K T TIC o o TR S S o

6.2.2 Pass by Var Paramaters

Pass by Var (variable) is also called
pass by reference. Parameters that are
passed by var reflect modifications to
the parameters back to the caller.
Therefore vyou may use this parameter
type as both an input and output parame-
ter. The use of the var symbol in a
parameter indicates that the parameter
is to be passed by read/write reference.
Only variables may be passed by this

mechanism; expressions and constants
may not, Also, fields of a packed

record or elements of a packed array may
not be passed as var parameters.

6.2.3 Pass by const Paranmeters

Parameters passed by const may not be
altered by the called routine. Also you
should not modify the actual parameter
value while the call to the routine has
not yvet completed. If you attempt to
alter the actual parameter while it is
being passed by const, the result is not
defined. This method could be called
pass_by read only reference. The param-—
eters appear to be constants from the
called routine's point of view. Any
expression, variable or constant may be
passed by const (fields of a packed
record and elements of a packed array
may also be passed). The use of the
"econst" reserved word in a parameter
indicates that the parameter is to be
passed by this mechanism. With parame-
ters which are structures (such as
strings), passing by const is usually
more efficient than passing by value.

6.2.% Formal Routine Parameters

A procedure or function may be passed to
a routine as a formal parameter. Within
the called routine the formal parameter
may be used as if it were a procedure or
function.

6.2.5 conformant string Parameters

It is often desirable to call a proce-
dure or function and pass in a string
whose declared length does not match
that of the formal parameter. The
conformant string parameter is used for
this purpose.

The conformant string parameter is a
pass by const or pass by var parameter
with a type specified as STRING without
a length qualifier. Strings of any
declared length will conform to such a
parameter. You can use the MAXLENGTH

L

parametar. You can use the MAXLENGTH
function to obtain the declared length.
See "MAXLENGTH Function" on page 137.

procedure TRANSLATE

(var S STRING;
const TABLE: STRING);
var

1 +0..32767;
J t 1..0RD(HIGHEST(CHAR))+1;

bagin
1 to LENGTH(S) do

for 1 :=
hegin
J 1= ORD(S[I1)+1;
if J > LENGTH(TABLE) then

S[IY := *
else
S[IJ := TABLELJI;
end;
end;

Example of a Conformant Strings

6.3 ROUTINE COMPOSITION

There are six kinds of routines:

. internal
. FORWARD

. EXTERNAL
. FORTRAN

. REENTRANT
. MAIN

The directive used to identify each kind
of declaration is shown in upper case
above.

Note:

. A routine must be declared before it
can be referenced. This allows the
compiler to assure the validity of a
call by checking parameter compat-
ibility.

6.3.1 Internal Routines

An internal routine may be invoked only
from within the lexical scope that con-
tains the routine definition.

6.3.2 FORWARD Routines

A routine declared FORWARD is the means
by which you can declare the routine

TNL SN20-4446 (31 December 81) to SH20-6168-1

heading before declaring the declara-
tions and compound statement. The rou-
tine heading is declared followed by the
symbol 'FORWARD'. This allows you to
have a call to a routine prior to defin-
ing the routine's body. If two routines
are to be mutually recursive and are at
the same nesting level, one of the rou-
tines must be declared FORWARD.

To declare the body of the FORWARD rou-

tine, you declare the routine leaving
off the formal parameter definition.

6.3.3 EXTERNAL Routines

An EXTERNAL routine
function that can be invoked from out-
side of its lexical scope (such as,
another module). The EXTERNAL directive
is used to specify the heading of such a

is a procedure or

routine. While many modules may call an
EXTERNAL routine, only one module will
actually contain the body of the
routine. The formal parameters defined

in the EXTERNAL routine declaration must
match those in the module where the rou-
tine is defined. An EXTERNAL routine
declaration may refer to a Pascals/Vvs
routine which is located later in the
same module or located in another module
or it mavy refer to code produced by oth-
er means (such as assembler code).

The following example illustrates two
modules (a program module and a segment
module) that share a single EXTERNAL
routine. Both modules may invoke the
routine but only one contains the defi-
nition of the routine.

program TEST;
function SQUARE(X
- EXTERNAL;
begin
WRITELNC SQUARE(44));
end .

SEGMENT S;
function SQUARE(X
EXTERNAL ;
function SQUARE;
begin
SQUARE := X % X
end;

REAL) REAL;

REAL)

REAL;

Example of an EXTERNAL Function

The body of an EXTERNAL routine may only
be defined in the outermost nesting lev-
el of a module; that is, it must not be

+ nested within another routine.

Routines 63

TNL SN20-4446 (31 December 81) to SH20-6168-1

B TR T Tk Tk o o o T I I R IR Mk e o R S R S T S R

6.3.4 FORTRAN Routines

A FORTRAN routine is similiar to an
EXTERNAL routine in that it specifies a
routine that is defined outside the mod-

ule keing compiled. In addition, it
specifies that the routine is a FORTRAN
subprogram and therefore the con-

ventions of FORTRAN are to be used. A
FORTRAN routine is never defined within
a PascalsVS module. If you pass a
literal constant to a FORTRAN subprogram
by CONST, then vou must assure that the
FORTRAN subprogram does not alter the
contents of parameter. In order to meet
the requirements of FORTRAN you must
obey the following restrictions:

. All parameters may be only var or
const parameters.

. I¥ the routine is a function, it may
only return a scalar result (this
includes REAL and SHORTREAL).

. Routines may not be passed.

. Multi-dimensional arrays are not
ramapped to conform to FORTRAN

indexing, that is, an element of an
array Aln,m) in Pascal will be ele-
ment A(m,n) in FORTRAN.

6.3.5 MAIN Procedures

The MAIN directive is used to identify a
Pascal procedure that may be invoked as
if it were a main program. It is some-
times desirable to invoke a Pascal/V$s
procedure from a non-Pascal routine, for
example FORTRAN or assembler language.
In this case it is necessary for certain
initializing operations to be performed
prior to actually executing the Pascal
procedure. The MAIN directive specifies
that these actions are to be performed.

There are several restrictions on the
use of the MAIN directive.

. only procedures may have the MAIN
directive;

64 Pascal/VS Reference Manual

PR PR AR PR PR PR PR U R TR R A SRR R o T T IR T S A A A A N R

declared to be
its body located in

L a procedure that is
MAIN must have
the same module;

U the execution of a MAIN procedure
will not be reentrant;

. the MAIN directive may only be
applied to procedures in the outer-
most nesting level.

Consult Pascal/VS Programmer's Guide,
order number SH20-6162 for further
details on using MAIN.

6.3.6 REENTRANT Procedures

The REENTRANT directive is used to iden-

tify a Pascal procedure that may be
invoked as if it were a main program
like a MAIN procedure. In addition,

invocations of these procedures will be
reentrant.

In order to achieve this addition fea-

ture, some help is required from vou.
The first parameter of a procedure
defined with the REENTRANT directive
must be an INTEGER passed by var. Prior
to the very first call from a
non-Pascal/VS program you must initial-
ize this variable to =zero (0). On

subsequent calls you must pass the same
variable back unaltered (Pascal/V$S sets
the variable on the first call and needs
that value on the subsequent
invocations). You need not call the
same procedure each time, you may call
different procedures - just continue to
pass this variable on each call.

Consult Pascal/VS Proarammer's Guide,
order number SH20-6162 for further
details on using REERTRANT.

Note: All Pascals/VS internal procedures
and functions are reentrant. The REEN-
TRANT directive is used to specify a
procedure that is both reentrant and
invokable from outside the Pascal/Vs
execution environment.

6.3.7 Examples of Routines

static
C: CHAR;

function GETCHAR:CHAR;
EXTERNAL;

procedure EXPR(var VAL: INTEGER);
EXTERNAL;

procedure FACTOR(var VAL: INTEGER);
EXTERNAL;
procedure FACTOR;
begin
C := GETCHAR;
if C = *(' then
beain
C := GETCHAR;
EXPR(VAL)
end
else

end;

procedure EXPR {var VAL: INTEGER};
bhegin
FACTOR(VAL);

e

end;

Examples of Routine Declarations

function CHARFOUND
(const S: STRING;
C: CHAR): BOOLEAN;
var I: 1..255;
begin
for I := 1 to LENGTH(S) do
if S[I] = C then
begin
CHARFOUND := TRUE;
return
end;
CHARFOUND := FALSE;
end;

Example of Const Parameter

6.% FUNCTION RESULTS

A value is returned from a function by
assigning the value to the name of the
function prior to leaving the function.
This value is inserted within the

expression at the point of the call.
The value must be assignment conformable
to the type of the function.

If the function name is used on the
right side of an assignment, it will be
interpreted as a recursive call.

function FACTORIAL
(X: INTEGER): INTEGER;

begin
if X <= 1 then
FACTORIAL := 1
else
FACTORIAL := X ¥ FACTORIAL(X-1)
end;

Example of Recursive Function

Standard Pascal permits a function to
return only a scalar value. Pascals/Vs
provides for a function to return any
type except a file. This means that vou
can wWrite a PascalsVS function that
returns a record structure as its result
(such as you might wish to do for imple-
menting a complex arithmetic library).
A function may also return a string,
however you must specify the maximum
length of the string to be returned.

type
COMPLEX = record
R,I : REAL
end
function CADD
(const A,B : COMPLEX) COMPLEX;
var ,
C_: COMPLEX;
begin
C.R := AR + B.R;
C.I := A.I + B.I;
CADD := C
end;

Example of a Function Returning a Record

PREDEFINED PROCEDURES AND FUNC~

6.5
TIONS

Pascal/VS predefines a number of proce-
dures and functions that vou may find
valuable. Details of the predefined
procedures and functions are given in
section titled "1I/0 Facilities"™ on page
103.

Routines 65

++ +

entire

TNL SN20-4446 (31 December 81) to SH20-6168-1

7.0 VARIABLES

Syntax:
variable:
notes:
—>{id}—>1
L<
> [T >{expr} > 1] > subscripted variable
< ’
——> . —>{id:field) > field reference
> > pointer reference
>
Pascal/VS divides variables into five
classes depending on how they are
declared: var
LINEL,
. automatic (var variables) LINE2 packed .
arrayl 1..80 1 of
. dynamic (pointer-qualified vari- CHAR;
ables)
. static (static variables) { assién all 80 characters }
{ of the array

. external (def/ref variables) LINEL := LINEZ2;
. parameter (declared on a routine Using Variables in their entirety

declaration)

A variable may be referenced in several
ways depending on the variable's type.
You may always refer to the entire vari-
able by specifying its name. You may
refer to a component of a structured
variable by using the syntax shown in
the syntax diagram.

If you simply specify the name of the
variable, then you are referring to the
variable. If that variable is
declared as an array, then you are
referring to the entire array. You may
assign an entire array. Similarly, you
may also deal with record and set vari-
ables as units.

7.1 SUBSCRIPTED VARIABLE

An element of an array is selected bv
placing an indexing expression enclosed
within square brackets, after the name
of the array. The indexing expression
must be of the same type as declared on
the corresponding array index defi-
nition.

A multi-dimensicnal array may be refer-
enced as an array of arrays. For exam-
ple, 1let variable A be declared as
follows:

A: array [a..b,c..d]l of T
As explained in "The Array Type" on page
42, this declaration is exactly equiv-
alent to:

A: array [a..b]l of
array [c..dl of T

Variables 67

TNL SN20-4446 (31 December 81) to SH20-6168-1

A roference of the form A[Il would be a
variable of type:

array [c..dl of T

and would represent a single row in
array A. A reference of the form
ALII[J] would be a variable of type T
and would represent the Jth element of
the Ith row of array A. This latter
reference would customarily be abbrevi-
ated as

ALI,J]

Any array reference with two or more
subscript indicies can be abbreviated by
writing the subscripts in a comma sepa-
rated list. That is, ALIIUJI]... could
be written as A[I,J,...].

If the "%CHECK SUBSCRIPT' option is ena-
bled, the index expression will be
checked at execution time to make sure
its value does not lie outside of the
subscript range of the array. An exe-
cution time error diagnostic will occur
if the value lies outside of the pre-
scribed range. (For a description of
the CHECK feature see "The %CHECK State-
ment” on page 148.)

A variable of type STRING may be sub-
scripted with an integer expression to
reference individual characters. The
value of the subscript must not be less
than 1 or greater than the length of the
string. String subscripts are checked
at run time if %CHECK SUBSCRIPT is ena-
bled.

ALl2]

ALI]

AL I+J 1

DECK[CARD—FIFTY 1]

MATRIX[ROWLI], COLUMNIJ] 1

Subscripted Variables

7.2 FIELD REFEREMCING

A field of a record is selected by fol-
lowing the record variable by a period
and by the name of the field to be ref-
erenced.

68 Pascal/VS Reference Manual

var 4
PERSON:
record
FIRST_NAME,
LAST_NAME: STRING(15);
end;

DATE:
record
DAY: 1..31;
MONTH: 1..12;
YEAR: 1900..2000
end;

DECK:
arrayll..52] of
record
CARD: 1..13;
SUIT:
(SPADE, HEART,
DIAMOND, CLUB)
end;

PERSON.LAST_NAME := 'SMITH';
DATE.YEAR := 1978;

DECKL I J.CARD := 2;

DECKL I 1.SUIT := SPADE;

Field Referencing Examples

7.3 POINTER REFERENCING

A dynamic variable is created by the
predefined procedure NEW or by an imple-
mentation provided routine which
assigns an address to a pointer
variable. You may refer either to the
pointer or to the dynamic variable; ref-
erencing the dynamic variable requires
using the pointer notation.

For example
var P ¢ 3 R;

P refers to the pointer
Pa refers to the dynamic variable

If the '"%CHECK POINTER' option is ena-
bled, any attempt to reference a pointer
that has not been assigned the address
of an allocated variable will result in
an execution time error diagnostic.
(For a description of the CHECK feature
see "The %CHECK Statement" on page 148.)

If the '%CHECK POINTER' option is ena-
bled, any attempt to reference a file
pointer which has no value will result
in an execution time error diagnostic.
(For a description of the CHECK feature
see "The %CHECK Statement"™ on page 146.)

var
INPUT 3 TEXT:;
OUTPUT : TEXT;
LINEL : array [1..80]1 of CHAR;

{ scan off blanks }

{ from a file of CHAR %

GET(INPUT);

while INPUTD = ' ' do
GETC(INPUT);

{ transfer a line to the }

{ OUTPUT file }

for I := 1 to 80 do
begin
OUTPUTa := LINEL[I];
PUTC(OUTPUT)
end;

File Referencing Examples

Variables

69

+ + +

8.0 EXPRESSIONS

Svntax:

constant—-expr:

expr:

—>{simple-expression} T >

> = >{simple-expression}—>
F——> <> ——>
——> < >
> (T —
—> >z —>
—> > >
—> in —>
simple-expression:
>{term} >
f—> ¥ ———)J —> 4+ —>
L—> = —> b——> = ——>
F——=~> && -->
o> | —>
<
term:
———>{factor} >
> % >
> 7/ >
F——> div ——>
——> mod ——>1
F——=> >> ===+
F——=> << ==——=D>
--=> | =--->]
> & >
L<
factor:

——F—>{function-calll >
——>{variablel} - >
r—>{set-constructorl} >
——> (—>{expr} >) >
F~—-—>{structured-constant}-——=m=—— e — - >4
r—> not —>{factorl >
~——>{unsigned-constant} >

Pascal/VS expressions are similar in - the not operator (highest)
function and form to expressions found - the multiplying operators

in other high level programming lan- - the adding operators

guages. Expressions permit you to com- - the relational operators (lowest)
bine data according to specific

computational rules. The type of compu-
tation to be performed is directed by
operators which are grouped into four
classes according to precedence:

An expression is evaluated by performing
the operators of highest precedence
first, operators of the next precedence
second and so forth. Operators of equal
precedence are performed in a left to
right order. If an operator has an
operand which i1s a parenthesized sub-

Expressions 71

expression, the
evaluated
operator.

sub-expression is
prior to applying the

The operands of an expression may be
evaluated in either order; that is, vou
should not expect the left operand of
dyvadic operator to be evaluated before
the right operand. If either operand
changes a global variable through a
function call, and if the other operand

72 Pascal/VS Reference Manual

uses that value, then the value used is
not specified to be the updated value.
The only exception is in boolean expres-—
sions involving the logical operations
of 'and' (&) and 'or' (|); for these
operations the right operand will not be
evaluated if the result can be deter-
mined from the left operand. See
"Boolean Expressions' on page 77.

TNL SN20-4446 (31 December 81) to SH20-6168-1

Examples of Expressions

Assume the following declarations:

const
ACME = 'acme';
typa
COLOR = (RED, YELLOW, BLUE);
SHADE = sgt of COLOR;
DAYS = (SUN, MON, TUES, WED, THUR, FRI, SAT);
MONTHS = (JAN, FEB, APR, MAY, JUN,
JUL, AUG, 0CT, NOV, DEC);
var
A_COLOR : COLOR;
A_SET ¢t SHADE;
BOOL : BOOLEAN;
~MON : MONTHS
I,
J : INTEGER;
factors:
I variable
15 unsigned constant
(I%8+J) parenthetical expression
[RED 1 set of one element
L1 empty set
ODD(I%J) function call
not BOOL complement expression
COLORC 1) scalar type converter
ACME constant reference
terms:
I factor
I x J multiplication
I div J integer division
ACME || ' TRUCKING® catenation
A_SET ¥ [RED 1 set intersection
I & "FF0O0'X logical and on integers
BOOL & 0ODD(I) boolean and

simple expression:

I | '80000000'X
A_SET + [BLUE 1]
-1

term

addition

logical or on integers
set union

unary minus on an integer

expression::

I+ J
RED = A_COLOR
RED in A_SET

simple expression
relational operations
test for set inclusion

Expressions

73

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ 4k

+ + +

8.1 OPERATORS
Multiplying Operators
operator operation operands result
* multiplication INTEGER INTEGER
REAL REAL
REAL, INTEGER REAL
SHORTREAL SHORTREAL
SHORTREAL, INTEGER SHORTREAL
SHORTREAL, REAL REAL
/ real division INTEGER REAL
REAL REAL
REAL, INTEGER REAL
SHORTREAL SHCORTREAL
SHORTREAL, INTEGER SHORTREAL
SHORTREAL, REAL REAL
div integer division INTEGER INTEGER
mod modulo INTEGER INTEGER
& (and) boolean and BOOLEAN BOOLEAN
& (and) logical and INTEGER INTEGER
% set intersection set of t set of t
11 string catenation STRING STRING
<< logical left shift |INTEGER INTEGER
>> logical right shift|{INTEGER INTEGER
Adding Operators
operator operation operands result
+ addition INTEGER, INTEGER INTEGER
REAL, REAL REAL
REAL, INTEGER REAL
SHORTREAL, SHORTREAL SHORTREAL
SHORTREAL, INTEGER SHORTREAL
SHORTREAL, REAL REAL
- subtraction INTEGER, INTEGER INTEGER
REAL, REAL REAL
REAL, INTEGER REAL
SHORTREAL, SHORTREAL SHORTREAL
SHORTREAL, INTEGER SHORTREAL
SHORTREAL, REAL REAL
- set difference set of t set of t
| o) boolean or BOOLEAN BOOLEAN
| (or) logical or INTEGER INTEGER
+ set union set of t sat of t
&& (xor) exclusive or INTEGER INTEGER
&& (xor) 'exclusive' union set of t sot of t

76 Pascal/VS Reference Manual

TNL SN20-4446 (31 December 81) to SH20-6168-1

The Not Operator

operator operation operand result
- (not) boolean not BOCLEAN BOOLEAN
-~ (not) logical one's INTEGER INTEGER
complement
= (not) set complement set of T get of T
Relational Operators
operator operation operands o result
= compare equal any set, scalar type, BOOLEAN
pointer or string
<> (==) compare not equal any set, scalar type, BOOLEAN
pointer or string
< compare less than scalar type or string BOOLEAN
<= compare < or = scalar type, string BOOLEAN
<= subset set of t BOOLEAN
> compare greater scalar type, string BOOLEAN
>= compare > or = scalar type, string BOOLEAN
>= superset set of t BOOLEAN
in set membership t and set of t BOOLEAN

Expressions

75

TNL SN20-4446 (31 December 81) to SH20-6168-1

R T b T R T S AT T T T T T I T AR R

8.2 CONSTANT EXPRESSIONS

Constant expressions are expressions
which can be evaluated by the compiler
and replaced with a result at compile
time. By its nature, a constant expres-
sion may not contain a reference to a
variable or to a user-defined function.
Constant expressions may appear in con-
stant declarations.

The following predefined functions are
permitted in constant expressions:

Function Page
ABS 132
CHR 126
HIGHEST 123
LENGTH 137
LOWEST 123
MAX 130
MAXLENGTH 137
MIN 130
oDD 132
ORD 126
PRED 131
scalar conversion

functions 127
SIZEOQOF 125
succe 131

76 Pascal/VS Reference Manual

A

constant

expression tvpe
ORD('AY) INTEGER
SUCCCCHR('FO0"X)>) CHAR
256 div 2 INTEGER

YTOKEN'| |STR(CHR(0)) STRING
'8000'X | '0001'X INTEGER
{'0'..'9"1 set of CHAR
32768%2-1 INTEGER

Examples of Constant Expressions

8.3 BOOLEAN EXPRESSIONS

You should recogniza that Pascal assigns
the operations of "&" (and) and "|" a
higher precedence than the relational
operators. This means that the expres-
s1on:

A<B & C<D
will be evaluated as :

(A < (B&C)) < D

Thus, it is advisable to use parenthesis
when writing expressions of this sort.

Pascal/VS will optimize the evaluation
of BOOLEAN expressions involving '&!'
tand) and '{' (or) such that the right
operand of the expression will not be
evaluated if the result of the operation
can be determined by evaluating the left
operand. For example, given that A, B,
and C are boolean expressions and X is a
boolean variable, the evaluation of

X:=AorBor C
would be performed as

if A then
X := TRUE
else
if B then
X := TRUE
else
X 3=

The evaluation of
X :=Aand B and C
would be performed as

if -A then
X := FALSE
elsa
if =B then
X = FALSE
else
X = C

The evaluation of the expression will
always be left to right.

The following example demonstrates log-
ic which depends on the conditional
evaluation of the right operand of the
"and" operator.

type
RECPTR = QREC;
REC = record
NAME: ALPHA;
NEXT: RECPTR;
end;

var
P : RECPTR;
LNAME ALPHA;
begin

while (P<>nil) and
d (Pa.NAME <> LNAME)
o

P := PA.NEXT;
en&;)

Example bf a BOOLEAN Expression
that Depends on Order of Evaluation

Notes:

. If you use a function in the right
operand of a boolean expression,
then you must be aware that the
function may not be evaluated. Fur-
ther, you should note that relying
on side-effects from <functions is
considered a bad programming prac-
tice.

L Not all Pascal compilers support
this interpretation of BOOLEAN
expressions. If yvou wish to assure
portability between Pascals/VS and
other Pascal implementations you
should write the compound tests in a
form that uses nested
if-statements.

Expressions 77

PRI R PR T I I Tk Tk o T S R I I I

8.4 LOGICAL EXPRESSIONS

Many of the integer operators provided
in Pascals/Vs perform logical operations
on their operands; that is, the operands
are treated as unsigned strings of bina-
ry digits instead of signed arithmetic
quantities. For example, if the integer
value of -1 was used as an operand of a
logical operation, it would be viewed as
a string of binary digits with a
hexadecimal value of '"FFFFFFFF'X.

The logical operations are defined to
apply to 32 bit values. Such an opera-
tion on a subrange of an INTEGER could
vield a result outside the subrange.

The following operators perform logical
operations on integer operands:

. 2" (and) performs a bit-wise and of
two integers.

. *1' (or) performs a bit-wise inclu-
sive OI*.

. T8&" (xor) performs a bit-wise

exclusive OF.

78 Pascal/VS Reference Manual

PR R I I R R R T ik 2 2 I R

'-' (not) performs a one's comple-

ment of an integer.

'<<' shifts the left operand value
left by the amount indicated in the
right operand. Zeroes are shifted in
from the right.

'>>' shifts the left operand value
right by the amount indicated in the
right operand. Zeroes are shifted in
from the left.

257 & 'FF'X vyields 1

21 41} 8 yvields 14

4 << 2 vields 16

-4 <<] vields -8

8 >> 1 vields 4

-8 >> 1 vields Y7FFFFFFC'X
YFFFF'X >> 3 yields Y1IFFF'X

-1 & 'FF'X vields 'FE'X

-0 vields -1

'FF'X &% 8 vields "F7'X

Examples of Logical Operations

8.5 FUNCTION CALL

Syntax:

function-call:

actuasl-parameters:

>{id:function}——>{actual-parameters}

A function returns a valua to the
invoker. A call to a function passes
the actual parameters to the correspon-
ding formal parameters. Each actual
parameter must be of a type that is
conformable to the corresponding formal
parameter. You may not pass a field of
a packed record as a var parameter. You
also may not pass an element of a packed
array as a var parameter.

The parenthesis list may be dropped if
the function requires no parameters.
However, if you wish to draw attention
to a function call that has no parame-
ters and make it appear different from a
variable reference, you can follow the
function name with an empty set of
parenthesis.

var A,B,C: INTEGER;
function sum
(A,B: INTEGER): INTEGER;
begln
SUM := A+B
end;
begin
C iz SUMCA,B) % 2
end;

Function Example

Expressions

79

P E R E R R R R BN R

8.6 SCALAR CONVERSIONS

Pascal’/VS predefines the function ORD
that converts any scalar value into an
integer. The scalar conversion func-
tions convert an integer into a speci-
fied scalar type. An integer expression
is converted to another scalar type by
enclosing the expression within paren-
theses and prefixing it with the type
jdentifier of the scalar type. If the
operand is not in the range 0 ..
ORD(HIGHEST(scalar type)), then a sub-
range error will result. The conversion
is performed in such a way as to be the
inverse of the ORD function. See
"Scalar Conversion" on page 126,

The definition of any type identifier
that specifies a scalar type (enumerated
scalars or subranges) forms a scalar

80 Pascal/VS Reference Manual

++++F bbb+

conversion function. By definition, the
expression CHAR(x) is equivalent to
CHR(x); INTEGER(x) is eauivalent to x;

and ORD(type(x)) is equivalent to x.

(SUN,MON, TUE,WED, THU, FRI,SAT);

var
DAY: WEEK;

{The.following assigns SAT to DAY}
DAY := WEEK(6);

Scalar Conversion Functions

8.7 SET CONSTRUCTOR

Svntax:

set-contructor:

> [>{expr} > 1] >
[L———> . ———>{expr}———>J
< , <
>d
A set constructor is used to compute a
value of a set type within an
expression. type
DAYS = sat of
The set constructor is list of comma (SUN,MON, TUES,WED, THU,FRI,SAT);
separated expressions or expression CHARSET= set of CHAR;
pairs within square brackets. An

expression pair designates that all val-
ues from the first expression through
the last expression are to be included
in the resulting set; the evaluation of
the first expression must produce a val-
ue less than or equal to the value
computed by the second expression. Each
expression must be of the same type;
this tvpe becomes the base scalar tvpe
of the set. If the set specifies INTE-
GER valued expressions, then there is an
implementation restriction of 256 ole-
ments permitted in the set.

var
WORKDAYS,
WEEKEND: DAYS
CHARSET;

NONLETTERS:

WORKDAYS :
WEEKEND

[MON. .FRI];
= WORKDAYS;

NONLETTERS :=

= ['a'.."2",'A", ., '2'];

| Set Constructor

Expressions

81

9.0 STATEMENTS

Syntax:

statement:

———-———>{1abel}'—-> 2>
F—-=>{assert-statement} === >
——>{assignment-statement} >
———>{case-statement} >
—> {compound-statement} >1
F--=>{continue-statement}-—=====—mmmmem e >1
——>{empty-statement} >
——>{for-statement} >
——>{goto-statement} >
—>{if-statement} >1
r—-->{leave-statement} - - === mm >
——>{procedure-call} >
——>{repeat-statement} >1
—-—>{return-statement}-—-—--—- e >
——>{while-statement} >
—>{with-statement} > >

Statements are your directions to per- those found in most high level program-
form specific operations based on the ming languages.

data. The statements are similar to

Statements 83

ORI T A T T I O A

9.1 THE ASSERT STATEMENT

Syntax:

assert—-statement:

-—-> assert -—-->{expr}--——==—-——m--——- - e m oo s S — e S em eSS

The assert-statement is used to check
for a specific condition and signal a
runtime error if the condition is not
met. The condition is specified by the
expression which must evaluate to a
BOOLEAN value. If the condition is not
TRUE then the error is raised. The com-
piler may remove the statement from the
program if it can be determined that the
assertion is always true.

84 Pascals/VS Reference Manual

B T

Example:
assert A >= B

The Assert Statement

9.2 THE ASSIGNMENT STATEMENT

Syntax:

assignment-statement:

>{variable} > = >{exprl} >
E:::>{id=function}———>J
The assignment-statement is used to
assign a value to a variable. This
statement is composed of a referaence to Example:
a variable followed by the assignment
symbol (':="), followed by an expression type
which when evaluated is the new value. CARD = record
The variable must be conformable to the SUIT : (SPADE,
expression. The rules for expression HEART,
conformability are given in "Type Com- DIAMOND,
patibility" on page 31. CLUB);
RANK 1..13
You may make array assignments (assign end;
one array to another array) or record
assignments (assign one record to anoth- var
er). When doing this, the entire array X, Y, Z REAL;
or record is assigned. :
LETTERS,
A result is returned from a function by DIGITS,
assigning the result to the function LETTER_OR_DIGIT
name prior to leaving the function. See : sat of CHAR;
"Function Results"™ on page 65
I, J, K INTEGER;
Pascals¥s will not permit the assignment
of a value to a pass by const parameter. DECK arrayl 1..52 1 of
CARD;
X 1= Y%Z;
LETTERS = [A AN H
DIGITS =L o' .. '9' 1;
LETTER_OR_DIGIT = LETTERS + DIGITS;
DECKL I J.SUIlT = HEART;
DECKL J 1 = DECKIL K 31;
Assignment Statements
Statements 85

+ o+ o+

+ ok

9.3 THE CASE STATEMENT

Syntax:
case-statement:
—> case —>{expr}—> of ———>]
<
>{range} T > @ >{statement} e >
I [< , <
< ;3 <
L<
L(_—_—- ; .(_—.—J
----> othernise ---7--- >{statement}---7--= >
T2 st ement]~— -]~
e e r e e ————— 4
——> end
The case-statement provides you with a
multiple branch based upon the evalu-
ation of an expression. This statement Example:
consists of an expression called the
selector and a list of statements. The type
selector must be of scalar type (except SHAPE = (TRIANGLE, RECTANGLE,
type REAL). Eath statement is prefixed SQUARE, CIRCLE);
with one or more ranges of the same type COORDINATES =
as the selector; each range is separated record
by a comma. Each range designates one XY REAL;
or more values called case labels. AREA REAL;
case S SHAPE of
Pascal/V5 evaluates the expression and TRIANGLE:
executes the statement whose case label (SIDE REAL;
equals the value of the expression. If BASE : REAL);
no case label equals the value of the RECTANGLE:
expression, then the otherwise state- (SIDEA,SIDEB REAL)Y;
ment is executed if it is present; if SQUARE:
there is no otherwise statement and the (EDGE REAL);
%CHECK CASE option is on, then a runtime CIRCLE:
error will result. If the checking is (RADIUS REAL)
not enabled the results will not be pre- end;
dictable. var
COORD COORDINATES;

The range values of a case-statement may
be written in any order. However, you
may not designate the same case label on
more than one statement.

86 Pascal/VS Reference Manual

with COORD do

case S of
TRIANGLE:
AREA :=

RECTANGLE:

AREA :=
SQUARE:

AREA :=
CIRCLE:

AREA :=
end;

0.5 % SIDE ¥ BASE;
SIDEA * SIDEB;
SQRCEDGE);

3.14159 % SQR(RADIUS)

The Case Statement

Example:

type
RANK = (ACE, TWO, THREE,FOUR,
FIVE, SIX, SEVEN,EIGHT,
NINE, TEN, JACK, QUEEN,
KING);
SUIT = (SPADE,HEART,DIAMOND,CLUB);
CARD = record
R ¢ RANK;
S t SUIT
end;
var

POINTS : INTEGER;
A_CARD : CARD;

case A;éARD.R of

ACE:
POINTS := 11;
TWO..TEN:
POINTS := ORDCA_CARD.R)+1
otheruise
POINTS := 10
end;

The Case Statement with otherwise

Statements 87

9.4 THE COMPOUND STATEMENT

Syntax:

compound-statement:

—> bhegin ———T———>{statement}——jT———> end
< ; <

The compound-statement serves to brack-
et a series of statements that are to be
executed sequentially. The reserved
words "hegin" and "end"” delimit the
statement. Semicolons are used to sepa-
rate each statement in the list of
statements.

38 Pascal/VS Reference Manual

Example:

if A > B then
begin { swap A and B }

TEMP = A;

A := B;

B = TEMP
end

Compound Statement

5 I IR N S NI PRI

9.5 THE CONTINUE STATEMENT

TNL SN20-4446 (31 December 81) to SH20-6168-1

Syntax:

continue-statement:

---> continue ----~--—---—cmme—ee

The continue statement causes a jump to
the loop-continuation portion of the
inner-most enclosing for, while, or
repeat statement. In other words, it is
a goto to the end of the loop.

The following examples illustrate how
the continue statement functions in each
of the loop constructs.
while expr do begin
continue
(#ééntinue jumps to herex)
end

for i := exprl to expr2 do
begin

continue

(iéontinue Jjumps to hera)
and

repeat
continue

(¥Xcontinue jumps to herex)
until expr;

Statements

39

TNL SN20-4446 (31 December 81) to SH20-6168-1

9.6 THE EMPTY STATEMENT

Syntax:

empty-statement:

>
The empty-statement is used as a place outer nested if-statement (see page 94)
holder and has no effect on the exe- by using an empty—-statement.
cution of the program. This statement
is often useful when you wish to place a if bl then
label in the program but do not want it if b2 then
attached to another statement (such as, sl
at the end of a compound-statement). else
The empty-statement is also useful to { empty-statement }
avoid the ambiguity that arises in nest- else
ed if-statements. You may force a s2

single else-clause to be paired with the

90 Pascal/VS Reference Manual

9.7 THE FOR STATEMENT

Syntax:

for-statement:

—> for —>{id}—> := —>{expr}

> to >{expr}———->
L———> dounto ——-—>J]

-

> do —>{statement} >

The for-statement repeatedly executes a
statement while the control variable is
assigned a series of values. The value
of the control variable is incremented
(to) or decremented (downto) for each
iteration of the loop. The increment
(decrement) is computed by the SUCC
(PRED) function. That is, the control
variable is changed to the succeeding
(preceding) value of the type of tha
control variable.

The for-statement initializes the con-
trol variable to the first expression.
Prior to each execution of the component
statement, the control variable is com-
pared less than or equal to (to), or
greater than or equal to (downto) the
second expression. Pascal/VS computes
the value of the second expression at
the beginning of the for-statement and
uses the result for the duration of the
statement. Thus the ending value
expression is computed once and can not
be changed during the for-statement.

The control variable must be an automat-
ic variable which is declared in the
immediately enclosing routine. Also, it
may not be subscripted, field qualified
or referenced through a pointer. The
type of the control variable must be a
scalar type.

The executed statement must not alter
the control variable. If the control
variable is altered within the loop, the
resultant loop execution is not predict-
able. The value of the control variable
after the for-statement is executed is
undefined (you should not expect the
_control variable to contain any partic-
ular value).

Given the following statement
for I := exprl to expr2 do stmt
where I is an automatic scalar variable;

exprl and expr2 are scalar expressions
which are type-compatible with I; and

'stmt' is any arbitrary statement. The
following compound statement is func-
tionally equivalent:

begin
TEMP1 := exprl;
TEMP2 := expr2;
if TEMP1 <= TEMP2 then
begin
I := TEMP1;
repeat
stmt;
if I = TEMP2 then
leave;
I := SUCCC(I)
until FALSE; {forever}
end
end

where 'TEMP1' and 'TEMP2' are compiler
generated temporary variables.

And given the following statement
for I := exprl downto expr2 do stmt

where I is an automatic scalar variable;
exprl and expr2 are scalar expressions
which are type-compatible with I; and
'stmt' is any arbitrary statement. The
following compound statement is func-
tionally equivalent:

begin
TEMP1l := exprl;
TEMP2 := expr2;
if TEMP1 >= TEMP2 then
begin
I := TEMP1;
repeat
stmt;
if I = TEMP2 then
leave;
I := PRED(I)
until FALSE; {forever}
end
end

where 'TEMP1' and 'TEMP2' are compiler
generated temporary variables.

Statements 91

Examples:

{ find the maximum INTEGER in
{ an array of INTEGERs
MAX := ALl];
LARGEST := 1;
for I := 2 to SIZE_OF_A do
if ALI] < MAX then
bagin
LARGEST := I;
MAX := ALI}
end

Cd topd

{ matrix multiplication: C<-A¥B 1}

for I := 1 to N do
for J:= 1 to N do
begin
X = 0.0;
for K := 1 to N do
X := A[LXI,K] % BL

{ sum the hours worked this week }

SUM := 0;
for DAY := MON to FRI do
SUM := SUM + TIMECARDL DAY]

The For Statement

92 Pascal’/V5S Reference Manual

9.8 THE GOTO STATEMENT

Syntax:

goto-statement:

—> goto —>{labell

The goto-statement changes the flow of
control within the program.

Examples:

goto 10
goto ERROR_EXIT

The Goto Statement

The label must be declared within the

routine that

contains the

goto~statement.

The following restrictions apply to the
use of the goto statement:

You may not branch into a compound
statement from a goto-statement
which i1s not contained within the
statement.

You may not branch into the then-—
clause or the else-clause from a
goto-statement that is outside the
if-statement. Further, you may not
branch between the then-clause and
thae else-clause.

You may not branch into a case-al-
ternative from outside the
case~statement or between case-al-
ternative statements in the same
case-statement.

You may not branch into a for,
repeat, or while loop from a goto
statement that 1is not contained
within the loop.

You may not branch into a
with-statement from a
goto-statement outside of the
with-statement.

For a goto-statement that specifies
a label that is defined in an outer
routine, the target label may not be
defined within a compound statement
or loop.

The following example illustrates legal
and illegal goto-statements.

procedure GOTO_EXAMPLE;
label

L1, L2, L3, L&
procedure INNER;

begin
goto L4; { permitted }
goto L3; { not permitted }
.end;
begin
goto L3; { not permitted }
begin
L3:
goto L4&; { permitted }
goto L3; { permitted }
end;

L4:if expr then

L1: goto L2 { not permitted }
else
L2: goto L1 { not permitted }

end;

Goto Target Restrictions

Statements 93

9.9 THE IF STATEMENT

Syntax:

if-statement:

—> if —>{expr}—> then —>{statement}

L—-—> else ——>{statement}——>J

The if-statement allows you to specify
that one of two statements is to be exe-
cuted depending on the evaluation of a
boolean expression. The if-statement is
composed of an expression and a then-
clause and an optional else-clause.
Each clause contains one statement.

The expression must evaluate to a
BOOLEAN value. If the result of the
expression is TRUE, then the statement
in the then-clause is executed. If the
expression evaluates to FALSE and there
is an else-clause, then the statement in
the else-clause is executed; if there is
no else-clause, control passes to the
next statement.

Example:

if A <= B then
A = (A+1.0)72.0

if O0bD(I) then
Jisg+l

else .
Jizsd div 2 + 1

The If Statement

Nesting of an if-statement within an
if-statement could be interpreted with
two different meanings if only one
statement had an else-clause. The fol-
lowing example illustrates the condi-

tion that produces the ambiguity.
Pascals/VS. always assumes the first
interpretation. That is, the

else-clauses are paired with the inner-
most if-statement.

94 Pascal/VS Reference Manual

The following line could be
interpreted two ways.

if bl then if b2 then stmtl else stmt2

Interpretation 1
(assumed by Pascals/Vs)

if bl then
begin
if b2 then

Interpretation 2
(incorrect interpretation)

if bl then
begin
if b2 then
stmtl
end
else
stmt2

If the second interpretation is desired
you could code it as shown or you could
take advantage of the empty-statement.

if bl then
if b2 then
stmtl
else
{ empty statement }
else
stmt2

s b T I S A A R A S

9.10 THE LEAVE STATEMENT

TNL SN20-4446 (31 December 81) to SH20-6168-1

Svyntax:

leave-statement:

-=-=> leave -~ e e e e ————————

The leave statement causes an immediate,
unconditional exit from the inner-most
enclosing for, while or repeat loop.
For example, the following two code seg-
ments are functionally equivalent:

while expr do
begin
leave
endl;

while expr do
begin

ééio lab;
end;
lab: ;

B A L L s

Example:

p:

=FIRST;

while P<>nil do

{

if PA.NAME = ‘'JOE SMITH' then
leave

else
P:=Pa.NEXT;

{ P either points to the desired ;

data or is nil

The Leave Statement

Statements

95

TNL SN20-4446 (31 December 81) to SH20-6168-1

9.11 THE PROCEDURE CALL

Syntax:

procedure-call:

—->{id:procedurel T

> ([>{exprl} T >) >J
< y X

The procedure-statement causes the

invocation of a procedure. When a pro-
cedure is invoked, the actual parameters

are substituted for the corresponding Example:

formal parameters. The actual parame-

ters must be conformable to the formal TRANSPOSECAN_ARRAY,
parameters. The rules for expression NUM-0F_ROWS,
conformability are given in "Type Com- NUM-0F_COLUMNS?);

patibility"” on page 31.
MATRIX_ADD(A_ARRAY,

Parameters which are passed by B_ARRAY,
read/write reference (var) may only be C_ARRAY,
variables, never expressions or con- N,M);

stants. Also, fields of a packed record

may not be passed by var. Parameters XYZ(I+J, KxL)

passed by value or read-only reference

(const) may be anhy expression. Procedure Invocations

A procedure invocation that requires no
parameters does not use the list of
operands.

96 Pascal/VS Reference Manual

9.12 TVHE REPEAT STATEMENT

Syntax:

repeat—-statement:

—> repeat >{statement}———T———> until —>{expr}
[< ; <

The statements contained between the
statement delimiters repeat and until
are executed until the control expres-
sion evaluates to TRUE. The control
expression must evaluate to type
BOOLEAN. Because the termination test
is at the end of the loop, the body of
the loop is always executed at least
once. The structure of the
repeat-statement allows it to act like a
compound statement in that it encloses a
list of statements.

Example

repeat
K = I mod J;
I := J;
J 1= K

until J = 0

The Repeat Statement

Statements

97

R R R

9.13 THE RETURN STATEMENT

Syntax:

return-statement:

—==> retuUrn ——- - m e e e e >

Pascal/VS will insure that a function
has been assigned a value prior to the
return from the function. If a value
has not been assigned, a runtime error
will occur.

The return-statement permits an exit
from a procedure or function. This
statement is effectively a goto to an
imaginary label after the last statement
within the routine being executed. If
the %CHECK FUNCTION option is enabled,

+ o+

98 Pascal/VS Reference Manual

9.1% THE WHILE STATEMENT

Syntax:

while-statement:

—-> While —>{expr}—> do —>{statement}

The while-statement allows you to speci-
fy a statement that is to be executed
while a control expression evaluates to Example:
TRUE. The control expression must eval-

uate to type BOOLEAN. The expression is { Compute the decimal size of N }
evaluated prior to each execution of the { assume N >= 1 }
statemant. I = 0;
J 1= 1;
while N > 10 do
begin
I :=1 +1;
J 3= J % 10;
N := N div 10
end
{ I is the power of ten of the

{ original N
{ J is ten to the I power

1 <=

N

<= 9

The While Statement

Statements

99

9.15 THE WITH STATEMENT

Syntax:

with-statement:

—> With ———t—~*>{va iablel
. r’ b e

>{statement} >

The with-statement is used to simplify
references to a record variable by elim-
inating an addressing description on
every reference to a field. The
with-statement makes the fields of a
record available as if the fields were
variables within the nested statement.

The with-statement effectively computes
the address of a record variable upon
executing the statement. Any modifica-
tion to a variable which changes the
address computation will not be
reflected in the pre-computed address
during the execution of the with state-
ment. The following example illustrates
this point.

var A arrayl 1..10] of
record
FIELD : INTEGER
end;
I:=1;
with AL I 1 do
hegin
K &= gIELD; {K:=A[1].FIELD}
I 2= 2;
K := FIELD; {K:=A[1).FIELD}
end;

The Address of A is Computed
on Entry to the Statement

The comma notation of a with-statement
is an abbreviation of nested
with-statements. The names within a
with-statement are scoped such that the
last with statement will take
precedence. A local variable with the
same name as a field of a record becomes

100 Pascals/VS Reference Manual

unavailable in a with statement that
specifies the record.

Example:
type
EMPLOYEE =
record
NAME : STRING(20);
MAN_NO : 0..9%99999;
SALARY INTEGER;
ID_NO 0..999999
end;
var
FATHER a EMPLOYEE;
with FATHERAY do
begin
NAME = 'SMITH';
MAH_NO := 666666;
SALARY := WEEKLY_SALARY;
ID_NO = MAN_NO
end

is equivalent to:

begin
FATHER® .NAME := YSMITH';
FATHERQ.MAN_NO := 666666;
FATHERQ.SALARY := WEEKLY_SALARY;
SATHERQ.ID_NO 1= FATHERQ.MAN_NO
en

Note: The variable FATHER is of type
pointer to EMPLOYEE, thus the pointer
notation must be used to specify the
record pointed to by the pointer.

The With Statement

Example:

V : record

V2 : INTEGER;
V1l : record A : REAL end;

A : INTEGER
end;
A : CHAR;
with v,v1 do
begin
vz = 1; {
A i 1.0;
V.A = 1 {
{
{
end;
A = "Ar; {

{

With Statements Can Hide a Variable

V.Vv2 := 1
V.V1.A = 1.0
V.A := 1

CHAR A is not
available here}

CHAR A is now }
available }

Saged Capt Cgd Sogd

Statements

101

Input and output are done using the file
data structure. The Pascals/VS Program-—
mer's Guide provides more detail on how
to use the I/0 facilities in a specific
operating system. Pascal/VS provides
predefined routines which operate on
variables of a file type. The routines

are:

. RESET

. REWRITE
. READ

o WRITE

. GET

o PUT

. EOF

. CLOSE

. UPDATE
. TERMIN

. TERMOUT
. PDSIN

. PDSOUT

. SEEK

To facilitate input and output oper-
ations that require conversion to and
from a character representation, the
predefined file type TEXT is provided.
The type TEXT is predefined as a file of
CHAR. Each GET and PUT transfers one
CHAR of information. There are addi-
tional predefined routines that may be
executed on variables of type TEXT that
perform the required conversions.

. READLN

. WRITELN
. EOLN
. PAGE
. COLS

10.0 I/0 FACILITIES

10.1 RESET PROCEDURE

Open a File for Input

Definition:

procedure RESET(
F : filetype;
const 5 : STRING);

Where:
F is a variable of a file type

S is an optional string value that
specifies options

RESET positions the file pointer to the
beginning of the file and prepares the
file to be used for input. After you
invoke RESET the file pointer is point-
ing to the first data element of the
file. If the file is associated with a
terminal, the terminal user would be
prompted for data when the RESET is exe-
cuted. This procedure can be thought of
as:

1. Closing the file (if open).
2 Rewinding the file.

3. Opening the file for input.
4

Getting the first component of the
file.

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the
Pascal/Vs Programmer's Guide, order
number SH20-6162 which describes the
options that are available.

I/0 Facilities 103

10.2 REWRITE PROCEDURE

Open a File for Output

10.3 TERMIN PROCEDURE

Open a File for Input from the Terminal

Definition:

procedure REWRITE(
F 2 filetype;

const S STRING);

Where:

F is a variable of a file type
S is an optional string value that
spacifies options

Definition:

procedure TERMIN(
F : TEXT;

const S STRING);

Where:

F is a variable of type TEXT
S is an optional string value that
specifies options

REWRITE positions the file pointer to
the beginning of the file and prepares
the file to be used for output. This
procedure can be thought of as:

1. Closing the file (if open).
2. Rewinding the file.
3. DOpening the file for output.

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the
Pascal/V$s Programmer's Guide, order
number SH20-6162 which describes the
options that are available.

104 Pascal/VS Reference Manual

TERMIN opens the designated file for
input from the users terminal. The
string parameter is used to specify any
special file dependent options to be
used in opening the file. Consult the
Pascal/VS _Programmer's Guide, order

number SH20-6162 which describes the
options that are available and operating
system dependencies on this procedure.

10.4 TERMOUT PROCEDURE

Open a File for Output from the Terminal

10.5 PDSIN PROCEDURE

Open a File for Input from a PDS

Definition:

procedura TERMOUT(
F : TEXT;
const S : STRING);

Where:

F is a variable of type TEXT
S is an optional string value that
specifies options

TERMOUT opens the daesignated file for
output to the users terminal. The
string parameter is used to specify any
special file dependent options to be
used in opening the file. Consult the
Pascals/VS__Proqrammer's Guide, order
number SH20-6162 which describes the
options that are available and operating
system dependencies on this procedurea.

Definition:
procedure PDSIN(
F : filetype;
const S : STRING);

Where:
F is a variable of a file type

S is a string value that specifies
options

PDSIN opens a member in a library (par-
titioned) file for input.

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the
Pascal/Vs Programmer's Guide, order
number SH20-6162 which describes the
options that are available.

I/0 Facilities 105

10.6 PDSOUT PROCEDURE

Open a File for Output to a PDS

10.7 UPDATE PROCEDURE

- e ! S

Open a File for Input and Output

Definition:

procadure PDSOUT(
F : filetype;
const S : STRING);

Where:
F is a variable of a file type,

$ is a string value that specifies
options.

Definition:

procedure UPDATE(
F : filetype;

const S STRING);

Where:

F is a variable of a file type,
S is a string value that specifies
options.

PDSOUT opens a member in a library (par-
titioned) file for output.

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the

Pascal/VS _Programmer's Guide, order
number SH20-6162 which describes the
options that are available.

106 Pascal’/VS Reference Manual

UPDATE opens a file for both input and
output (updating). A PUT operation
replaces a file component obtained from
a preceding GET operation. The exe-
cution of UPDATE causes an implicit GET
of the first file component (as in

RESET). The following program fragment
jillustrates the use of UPDATE.
var
FILEVAR : file of record
CNT : INTEGER;
end;
UPDATE(FILEVAR); {open and get }
uhile_not EOF(FILEVAR) do
begin

FILEVARQ.CNT := FILEVARQ.CNT+1;

PUT(FILEVAR); {update last elem}

gET(FILEVAR); {get next elem }
ena;

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the
Pascal/VS _Programmer's _Guide, order
number SH20-6162 which describes the
options that are available.

+ 10.8 CLOSE PROCEDURE 10.9 GET PROCEDURE

+

+

+ Close a File Position a File to Next Element

+

+ Definition: Definition:

+

+ | procedure CLOSE(procedure GET(F : filetype);

+ F : filetype);

+ Where:

..’.

+ Where: F is a variable of a file type.

+

+ F is a variable of a file type

+

+

+ GET positions the file pointer of a file
(previously opened for input) to the

+ CLOSE closes a file; all processing to next component in the file. For

+ the file is completed. You must open example, if the file is defined as an

+ the file prior to using it again.

array of 80 characters, then each GET
raturns the next 80 character record. A
GET invocation on a file of type TEXT
returns a single character.

I/0 Facilities 107

10.10 PUT PROCEDURE

Position a File to Next Element

10.11 SEEK PROCEDURE

Position a File to a Specified Element

Definition:

procedure PUT(F : filetype);

Where:

F is a variable of a file type.

PUT releases the current component of
the file variable by effectively writing
the component to the associated physical
file. A call to PUT with a file of type
TEXT transfers a single character. The
file must have been previously opened
for output.

108 Pascals/V$s Referénce Manual

Definition:

procedure SEEK(
F : filetype;
N ¢ INTEGER);

Where:
F is a variable of a file type,

N is an component number of
the file.

SEEK specifies the number of the next
file component to be operated on by a
GET or PUT operation. File components
are origined at 1. The SEEK procedure
is not supported for TEXT files. The
file specified in the SEEK procedure
must have been opened by RESET, REWRITE
or UPDATE. For more infomation, consult
the Pascal/VS Programmer's Guide, order
number SH20-6162.

10.12 EOF FUNCTION

Test File for End Of File

10.13 READ AND READLN (TEXT FILES)

Read Data from TEXT File

Definition:
function EOF(F:filetype):BOOLEAN;
function EOF:BOOLEAN;

=

here:

-

is a variable of a file type.

EOF is a BOOLEAN valued function which
returns TRUE if the end-of-file cond-
ition is true for the file. This condi-
tion occurs in an input file when an
attempt is made to read past the last
record element of the file. If the file
is open for output, this function always
returns TRUE.

If the file variable F is omitted, then
the function assumes the predefined file
INPUT.

Example:

{ The follouwing will read all of }
{ the records from File SYSIN }
{ and write then out to SYSOUT }

type FREC =
record
A,B

end;

INTEGER

var
SYSIN,
SYSoUT: file of FREC;

begin
RESET(SYSIN);
REWRITE(SYSOUT);
whil® not EOF(SYSIN) do
begin
S5YSOUTa := SYSING;
PUT(SYSOUT);
GET(SYSIN)
end;
end;

Definition:

procedure READ(
f : TEXT;
v ! see below);

procedure READLN(
f : TEXT;
v ! see below);

Where:

f is an optional text file
that is to be used for input.
v is one or more variables,
each must be one of the
following types:
- INTEGER (or subrange)

- CHAR (or subrange)
- REAL

- SHORTREAL

- STRING

packed array of CHAR

The READ procedure reads character data
from the TEXT file f. READ converts
character data to conform to the type of
the operand. The file parameter is
optional; the default file is INPUT.

READLN positions the file at the begin-
ning of the next line. You may use more
than one variable on each call by sepa-
rating each with a comma. The effect is
the same as multiple calls to READ.

READ(f,vl,v2)
is equivalent to:

begin
READ(F,v1);
READ(F,v2)
end

and
READLN(f,v1,vZ,v3)
is equivalent to:
begin
READ(Ff,v1);
READ(Ff,v2);
READ(f,v3);

READLN(F);
end

Multiple Variables on READ or READLN

I/0 Facilities 109

P E R R

Reading INTEGER Data

INTEGER data from a TEXT file is read by
scanning off leading blanks, accepting
an optional sign and converting all
characters up to the first non-numeric
character or end-of-line.

Reading CHAR Data

A variable of type CHAR is assigned the
next character in the file.

Reading STRING Data

Characters are read into a STRING vari-
able until the variable has reached its
maximum length or until the end of the
line is reached.

Reading REAL (SHORTREAL) Data

REAL (SHORTREAL) data is read by scan-
ning off leading blanks, accepting an
cptional sign and converting all charac-
ters up to the first non—numeric charac-
ter not conforming to the syntax of a
REAL number.

Reading packed array of CHAR Data

If the variable is declared as a
'‘packed arrayli..n] of CHAR', charac-
ters are stored into each element of the
array. This is equivalent to a loop
ranging from the lower bound of the
array to the upper bound, performing a
read operation for each element. If the
end-of-line condition should become
true before the variable is filled, the
rest of the variable is filled with
blanks.

Consult the Programmer's Guide for more
details on the use of READ and READLN.

110 Pascals/VS Reference Manual

var
I,J: INTEGER;
S: STRING(100);
CH: CHAR;
cC: packed arrayl[1..101 of CHAR;
F: TEXT:;

READLN(F,I,J,CH,CC,S);

assume the data is:

36 24 ABCDEFGHIHKLMNOPQRSTUVWXYZ

the variables would be assigned:

1 36
J 24
cH v v
CcC '"ABCDEFGHIJ'

S 'KLMNOPQRSTUVHWXYZ"
LENGTH(S) 16

The READ Procedure

Reading Variables with a Length

You may optionally qualify a variable of
READ with a field length expression:

READ(f,v:n)

where "v" is the variable being read and
"n" is the field length expression.

This expression denotes the number of
characters in the input line to be proc-
essed for that variable. If the number
of characters indicated by the field
length is exhausted during a read opera-

“ tion, then the reading operation will

stop so that a subsequent read will
begin at the first character following
the field. If the reading completes
prior to processing all characters of
the field then the rest of the field is
skipped.

var
I,J: INTEGER;
S: STRING(100);
CH: CHAR;
CC: packed arrayll..10]1 of CHAR;
F: TEXT;

READLN(F,I:64,J:10,CH:J,CC,5);

assume the data is:

36 24 ABCDEFGHIKLMNOPQRSTUVWXYZ

the variables would be assigned:

1 36

J 4

CH 1Y

cC "NOPQRSTUVW'

S 'Xyz'
LENGTH(S) 3

The READ Procedure with Lengths

10.16_READ (NON-TEXT FILES)

Read Data from Non-TEXT Files

Definition:

procedure READ(
f : file of t;
v @ t);

Where:
f is an arbitrary file variable.
v is a variable whose type matches
the file component type of f

Each call to READ will read one file
element from file 'f' and assign it to
variable 'v'. If the file is not open,
the READ procedure will open it prior to
assigning to the argument.

READ(f,v) is functionally equivalent to
the following compound statement:

begin v = fa; GET(f) end

For more details consult the Program-
mer's Guide.

I/0 Facilities 111

10.15 WRITE AND WRITELN (TEXT FILES)

Write Data to Flle

Definition:

procedure WRITE(
f : TEXT;
e ! see below);

procedure WRITELN(
f : TEXT;
e : see below);

Where:
f is an optional TEXT file
variable.
e is an expression of one of the
following types:
- INTEGER (or subrange)
CHAR (or subrange)
REAL
SHORTREAL
BOOLEAN
STRING
- packed arrayll..n] of CHAR
Pascal/VS accepts a special para-
meter format which is only
allowed in the WRITE routine
for TEXT files.
See the following description.

The WRITE procedure writes character
data to the TEXT file specified by .
The data is obtained by converting the
expression e into an external form. The
file parameter is optional; if not spec-
ified, the default file OUTPUT is used.

WRITELN positions the file to the begin-
ning of the next line. MWRITELN is only
applicable to TEXT files. You may use
more than one expression on each call by
separating each with a comma. The
ef§ect is the same as multiple calls to
WRITE.

112 Pascal/VS Reference Manual

NRITE(f}Ql,QZ)
is equivalent to:

begin
WRITE(f,el);
WRITE(f,e2)
end

and
WRITELN(f,el,e2,e3)
is equivalent to:

begin
WRITE(f,e
WRITE(f,e
WRITE(f, e
WRITELN(F
end

.

NN
(NN

Multiple Expressions on WRITE

Pascal/VS supports a specialized form
for specifying actual parameters on
WRITE and WRITELN to TEXT files. This
provides a means by which you can speci-
fy the length of the resulting output.
Each expression in the WRITE procedure
call may be represented in one of three
forms:

1. e
2. et lenl
3. e lenl : len2

The expression e may be of any of the
types outlined above and represents the
data to be placed on the file. The data
is converted to a character represen-
tation from the internal form. The
expressions lenl and len2 must evaluate
to an INTEGER value.

The expression lenl supplies the length
of the field into which the data is
written. The data is placed in the
field justified to the right edge of the

+ field. If lenl specifies a negative

+ value, the data is justified to the left
within a field whose length is
ABS(lenl).

The len2 expression (form 3) may be
specified only if e is an expression of
tvpe REAL.

If lenl is unspecified (form 1) then a
default value is used according to the
table below.

+ 4+

tyvpbe of default value
expression e of leni

INTEGER 12

REAL 20 (E notation)
SHORTREAL 20

CHAR : 1

BOOLEAN 10

STRING LENGTH(expression)

array of CHAR length of array

Default Field Width on WRITE

Writing INTEGER Data

The expression lenl represents the mini-
mum width of the field in which the
integer is to be placed. The value is
converted to character format and placed

in a field of the specified langth. 1If
the field is shorter than the size
required to represent the value, the
length of the field will be extended.
Examples:

Call: Result:
WRITE(1234:6) vo1234
WRITE(1234:-6) '1234
-WRITE(1234:1) '1234"
WRITE(1234) o 1234"
WRITE(1234:-3) 1234

Writing CHAR Data

The value of lenl is used to indicate
the width of the field in which the
character is to be placed. If lenl is
not specified, a field width of 1 is

assumed. If lenl

is greater than 1 then

the character will be padded on the left
with blanks; if lenl is negative, then
the character will be padded on the
right.
Example:
call: Result:
WRITE('a':6) ' a'
WRITE('a':-6) 'a '

Writing REAL Data

REAL expressions may be printed with any
one of the three operand formats. If

okt

++ +

TNL SN20-4446 (31 December 81) to SH20-6168-1

lenl is not specified (form 1), the
result will be in scientific notation in
a 20 character field.

If lenl is specified and len2 is not
(form 2), the result will be in scien-
tific notation but the number of charac-
ters in the field will be the value of
lenl.

If both lenl and len2 are specified
(form 3), the data will he written in
fixed point notation in a field with
length lenl; len2 specifies the number
of digits that will appear to the right
of the decimal point. The REAL expres-
sion is always rounded to the last digit
to be printed.

If lenl is not large enough to fully
represent the number, it will be
extended appropriately.
Examples:
Call:) Result:
WRITE(3.14159:10)
' 3.1642E+00°'
WRITE(3.14159)
' 3.1415900000000E+00"
WRITE(3.14159:10:4)
' 3.1416"
Writing BOOLEAN Data
The expression lenl is used to indicate

the width of the field in which the boo-
lean is to be placed. If the width is
less than 6, then aither a 'T' or 'F!
will be printed. Otherwise, 'TRUE' or
'FALSE' will be sent to the file. The
data is placed in the field and justi-
fi?d according to the previously stated
rules.

Examples:

Call: Result:
WRITE(TRUE:10) ' TRUE?
WRITE(TRUE:-10) 'TRUE '
WRITE(FALSE:2) ' F?

Writing STRING Data

The second expression is used to indi-
cate the width of the field in which the

string is to be placed. The data is
placed in the field and justified
according to the previously stated
rules.

I/0 Facilities 113

TNL SN20-4446 (31 December 81) to SH20-6168-1

Examples:

Call: Result:
WRITE('abcd':6) ' abcd'
WRITE('abcd':-6) 'abcd

WRITE('abcd':2) ‘ab'

WRITE('abecd') 'abcd'

Writing Packed Array of CHAR Data

The second expression is used to indi-
cate the width of the field in which the
array is to be placed. The data is
placed in the field and justified

according to the previously stated
rules.
Examples:
var
A : packed
arrayl 1..4] of CHAR;
A = 'abcd';

Call: Result:
WRITE(CA:6) ' abcd'
WRITE(CA:-6) *abecd '
WRITE(A:2) 'ab'
WRITE(A) ‘abed'

114 Pascal/VS Reference Manual

10.16 WRITE (NOM-TEXT FILES)

Write Data to Non-TEXT Files

Definition:
procedure WRITE(
f : file of t;
e : t);
Where:

f is an arbitrary file variable.

e is an expression whose type
matches the file component
type of f

Each call to WRITE will write the value
of expression e to file "f',

WRITE(f,e) is functionally equivalent
to the following compound statement:
begin fa = e; PUT(f) end

For more details consult the Program-
mer's Guide.

10.17 EOLN FUNCTION

Test a File for End of Line

10.18 PAGE PROCEDURE

Force Skip to Next Page

Definition:
function EOLNC f: TEXT):BOOLEAN;
function ECLN:BOOLEAN;

Where:

f is a TEXT file set to
input.

The EOLN function returns a BOOLEAN
result of TRUE if TEXT file f is posi-
tioned to an end-of-line character;
otherwise, it returns FALSE.

If EOLNCF) is true, then fa has the val-
ue of a blank. That is, when EOLN is
TRUE the file is positioned to a blank.
This character is not in the file but
will appear as if it were. In many
applications the extra blank will not
affect the result; in those instances
where the physical layout of the data is
significant vou must be sensitive to the
EOLN condition.

If the file variable F is omitted, then
the function assumes the predefined file
INPUT.

Definition:
procedure PAGE(var f: TEXT);
Where:

f is a TEXT file set to
output.

This procedure causes a skip to the top
of the next page when the text-file is
printed. The file parameter is optional
and defaults to the standard file vari-
able OUTPUT.

I/0 Facilities 115

+
+
+
+
+

PR T ik A

10.19 COLS FUNCTION

Determine Current Column

Definition:

function COLS(
var f: TEXT) : INTEGER;

Where:

f is a TEXT file set to
output.

116 Pascals/VS Reference Manual

B R R

This function returns the current column
number (position of the next character
to be written) on the output file desig-
nated by the file variable. You may
force the output to a specific column
with the following code:?

if TAB > COLS(F) then
WRITE(F," ":TAB-COLS(F));

The file name is never defaulted on the
COLS procedure.

+

PR R O R R 3 + + + +

R

The runtime library consists of those
routines that are predefined in
Pascals/VS. In addition to the routines
described in this chapter, Pascals/Vs
provides routines with which to do input
and output. Consult the I/0 chapter for
a description of those routines. The
predefined procedures and functions
are:

. ABS Function

. ARCTAN Function

. CHR Function

. CLOCK Function

o COMPRESS Function

. C0S Function

U DATETIME Procedure

. DELETE Function

. DISPOSE Procedure

. EXP Function

. FLOAT Function

. INDEX Function

. HALT Procedure

. HBOUND Function

e HIGHEST Function

. LBOUND Function

. LENGTH Function

. LN Function

. LOWEST Function

. LTRIM Function

. MARK Procedure

. MAX Function

+ + +

R R + +

+ +

4+ o+

+ 4+ +

TNL SN20-4446 (31 December 81) to SH20-6168-1

11.0 EXECUTION LIBRARY FACILITIES

MAXLENGTH Function
MIN Function

NEW Procedure

ODD Function

ORD Function

PACK Procedure
PARMS Function
PRED Function
RANDOM Function
READSTR Procedure
RELEASE Procedure
RETCODE Procedure
ROUND Function
Scalar Conversion
SIN Function
SIZEOF Function
SQR Function

SQRT Function

STR Function
SUBSTR Function
SUCC Function
TRUNC Function
TRIM Function
TOKEN Function
TRACE Procedure
UNPACK Procedure
WRITESTR Procedure

Execution Library Facilities

117

TNL SN20-4446 (31 December 81) to SH20-6168-1

-+ + o+

L I T R AR R,

11.1 MEMORY MANAGEMENT ROUTIMES

These routines provide means by which you can control the allocation of dvynamic var-

iables.

11.1.1 MARK Procedure

Mark Heap

Definition:

procedure MARK(
var P pointer);
Where:

P is a pointer to any type

The MARK procedure allocates a new area
of memory from where dynamic variables

are to be allocated. Such an area is
called a heap.. The predefined proce-
dure NEW allocates a dynamic variable

from the most recently created heap.
The predefined procedure DISPOSE
de-allocates a dynamic variable from the
heap.

RELEASE is the complementary procedure
which destroys a heap. Heaps are cre-
ated and destroyed in a stack-like fash-
ion.

MARK does not allocate dynamic
variables. The pointer variable passed
as parameter P is set to the address of
the associated heap control block; thus,
the raeturned pointer must not be used as
the base of a dynamic variable.

when the heap is freed.
unpredictable results.

118 Pascal/V5 Reference Manual

+
+
+
+
+

P R R I s

11.1.2 RELEASE Procedure

Release Heap

Definition:

procedure RELEASE(
var P pointer);

Where:

P is a pointer to any type.

RELEASE frees one or more heaps that
were previously allocated by calls to
MARK. (See the description of MARK for
a definition of "heap".) The parameter
of RELEASE must contain the address
returned by a previous call to MARK; it
is through this parameter that the heap
is identified.

RELEASE frees all heaps that were allo-
cated since the corresponding MARK was
executed. Thus, heaps are created and
destroyed in a stack-like manner.

When a heap is freed, all of the dynamic
variables which were allocated from the
heap are also freed. As a result,
RELEASE is a means for disposing of many
dynamic variables at one time.*4

RELEASE sets its parameter variable (P)
to nil.

Pointers which reference dynamic variables of a heap are no longer defined
Subsequent uses of such pointer values may cause

R e i e I

type
MARKP =
LINKP =
LINK =

var
P
1,
Q2,
Q3

begin

MARK(P)
NEW(Q1)
NEW(Q2)
NEW(Q3)
‘(. f':rees
RELEASE
end;

Exam

AINTEGER;
ALINK;
record
NAME: STRING(30);
NEXT: LINKP
end;

: MARKP;

LINKP;

;

;

Q1l, Q2 and Q3
(P);

ple of MARK and RELEASE

TNL SN20-4446 (31 December 81) to SH20-6168-1

Execution Library Facilities 118.1

TNL SN20-4446 (31 December 81) to SH20-6168-1

118.2 Pascals/VS Reference Manual

11.1.3 NEHM Procedure

Allocate Dynamic Variable

Definition:

form 1:
procadure NEW(

var P pointer);
form 2:
procedure NEW(

var Pl pointer;

t1,t2... scalar);

form 3:
procedure NEW(

var SP STRINGPTR;

LEN ¢ INTEGER;

Where:

P is a pointer to any type
except a dynamic array.

Pl is a pointer to a record
type with variants

SP is a STRINGPTR

tl,t2... are scalar constants
representing tag fields

LEN is an integer valued expression

The NEW procedure allocates a dynamic
variable from the most recent heap and
sets the pointer to point to the vari-
able.

form 1

The first form of procedure NEW allo-
cates the amount of storage that is nec-
essary to represent a value of the type
to which the pointer refers. If the
type of the dynamic variable is a record
with a variant part, the space allocated
is the amount required for the record
when the largest variant is active.

type
LINKP = QLINK;
LINK = record
NAME: STRING(30);
NEXT: LINKP
end;
var
P,
HEAD : LINKP;

begin
NEW(P);
With P2 do
begin
NAME := v
NEXT := HEAD;

end;
HEAD := P;

end;

Example of using Simple Form
of Procedure NEW

form 2

The second form is used to allocate a
variant record when it is known which
variant (and sub-variants) will be
active, in which case the amount of
storage allocated will be no larger than
necessary to contain the variant speci-
fied. The scalar constants are tag
field values. The first one indicates a
particular variant in the record which
will be active; subsequent tags indicate
active sub-variants, sub-sub-variants,
and s0 on.

Note: This_procedure does not set tag
fields. The tag list only serves to
indicate the amount of storage required;
it is the programmer's responsibility to
set the tag fields after the record is
allocated.

Execution Library Facilities 119

type
AGE = 0..100;
RECP = QREC;

REC =
record
NAME: STRING(30);
case HOW_OLD: AGE of
0..18:
(FATHER: RECP);
19..100:
(case MARRIED: BOOLEAN of
TRUE: (SPOUSE: RECP);
, FALSE: ()
end;
var
P : RECP;
begin

NEW(P,18);

With Pa do begin
NAME := 'J. B. SMITH, JR!
HOW_OLD := 18;
NEW(FATHER,54, TRUE);

With FATHER? do begin
NAME := 'J. B. SMITH';
HOW_OLD := 54;

MARRIED := TRUE;
NEW(SPOUSE,50, TRUE);

end {wi th fatheral;
end {with pa};

en&§)

Using NEW for Allocating
Records with Variants

form 3

The third form is used to allocate a
string whose maximum length is knoun
only during program execution. The
amount of storage to be available for
the string is defined by the required
second parameter. See "The Type
STRINGPTR" on page 58.

120 Pascal/VS Reference Manual

11.1.4 DISPOSE Procedure

De-allocate Dynamic Variable

Definition:
procedure DISPOSE(

var P ¢ pointer);
Where:

P is any pointer type.

DISPOSE returns storage for a dynamic
variable. You may de-allocate a dynamic
variable from any heap. This procedure
only returns the storage referred to by
the pointer and does not return any
storage which the dynamic variable ref-
erences. That is, if the dynanmic
variable is part of a linked list, you
must explicitly DISPOSE of every element
of the list. DISPOSE sets the pointer
to nil. If you have other pointers
which reference the same DISPOSEd dyna-
mic variable, then it is your
responsibility not to use these pointers
because the dynamic variable which they
represented is no longer allocated.

11.2 DATA MOVEMENT ROUTINES

Thesa routines provide you with convenient ways to handle large amounts of data

movement efficiently.

11.2.1__PACK Procedure

Copy Unpacked Array to Packed Array

Definition:

procedure PACK(
const SOURCE :
INDEX

var TARGET

array-type;

¢ index_of_source;
pack_array_type)

Where:

SOURCE is an array.

INDEX is an expression which is
compatible with the index
of SOURCE.

TARGET is a variable of type packed|-
array.

This procedure fills the target array
with elements from the source array
starting with the index I where the tar-
get array is packed. The types of the
elements of the two arrays must be iden-
tical. This procedure operates as:

Given:
A : arraylm..nl of T;
Z : packed arraylu..v] of T;

Call:
-PACK(A, I, 2);

Operation:
L
for j_:= LBOUND(Z) to HBOUND(Z) do
begin
2031 := ALk];
k := SUCC(Kk)
end;

Where:
Jj and k are temporary variables.

It is an error if the number of elements
in Z is greater than the number of ele-
ments in A starting with the Ith element
to the end of the array.

11.2.2 UNPACK Procedure

Copy Packed Array to Unpacked Array

Definition:

procedure UNPACK(
var SOURCE pack_array_type;
const TARGET array-type;
INDEX index_of_target);
Where:

SOURCE is a packed array.

TARGET is a variable of type array.

INDEX is an expression which is
compatible with the index
of TARGET.

This procedure fills the target array
with elements from the source array
where the source array is packed. The
type of the elements of the two arrays
must be identical. This procedure oper-
ates as:

Given:
A : arraylm..nl] of T;
Z : packed arraylu..v] of T;

Call:
UNPACK(Z, A, I);

Operation:
k := 1I;
for J .= LBOUND(Z) to HBOUND(Z) do
begin
Alk) = Z2[31;
k = SUCC(k)
end;

Where:
3 and k are temporary variables.

It is an error if the number of elements
in Z is greater than the number of ele-
ments in A starting with the Ith element
to the end of the array.

Execution Library Facilities 121

+ 4+ 4+

S T i b L

+++++++++++++++++++++++++++++++++++++++

11.3 DATA ACCESS ROUTINES

These routines provide you a means to in

quire about compile and run time bounds and

values.
11.3.1 LOWEST Function + 11.3.2 HIGHEST Function
+
+
Lowest Value of a Scalar + Highest Value of a Scalar
+
Definition: + Definition:
+
function LOWEST(+ function HIGHEST(
S scalar-type) + S scalar-type)
scalar; + scalar;
+
Where: + Where:
+
S is an identifier that has been + S5 is an identifier that has been
declared as a scalar type, or + declared as a scalar type, or
a variable which is of a scalar + a variable which is of a scalar
type. + type.
+
+
+

This function returns the lowest value
that is in the scalar type. The operand
may be either a type identifier or a
variable. If the operand is a type
identifier, the value of the function is
the lowest value that a variable of that
type may be assigned. If the operand is
a variable, the value of the function is
the lowest value that the variable may
be assigned.

If the argument S refers to a
record-type which has a variant part,
and if no tag values are specified, then
the storage required for the record with
the largest variant will be returned.

Example:
type
DAYS = (SUN, MON, TUES, WED,
THU, FRI, SAT);
SMALL =0 .. 31;
var
I : INTEGER;
J : 0 .. 255;
LOWEST(DAYS) is SUN
LOWEST(BOOLEAN) is FALSE
LOWEST(SMALL) is 0
LOWEST(I) is MININT
LOWEST(J) is 0
The LOWEST Function
122 Pascal/Vs Reference Manual

+++++++++++++++++++++++++++++++++

This function returns the highest value
that is in the scalar type. The operand
may be either a type identifier or a
variable. If the operand is a type
identifier, the value of the function is
the highest value that a variable of
that type may be assigned. If the oper-—
and is a variable, the value of the
function is the highest value that the
variable may be assigned.

Exampla:

type
DAYS = (SUN, MON, TUES, WED,

THU, FRI, SAT);

SMALL =0 .. 31;

var
I : INTEGER;
J : 0 .. 255;
HIGHEST(DAYS) is SAT
HIGHEST(BOOLEAN) is TRUE
HIGHEST(SMALL) is 31
HIGHEST(I) is MAXINT
HIGHEST(J) is 255

The HIGHEST Function

+
+
+
+
+

R R I R e I I S PR

R T I R I e A LU PO R

11.3.3_ LBOUND Function

Lower Bound of Array

Definition:

function LBOUND(
v H

arraytype;
I : integer-const)
! scalar;

function LBOUND(
T ¢ type-identifier;
I ! integer-const)
! scalar;

Where:

V is a variable which is declared
as an array type.

T is an type identifier declared
as an array.
I is an positive integer valued

constant expression and is
optional.

The LBOUND function returns the lower
bound of an index to an array. The
array may be specified in two ways:

. an identifier which was declared as
an array type via the tvpe
construct;

L a variable which
type.

is of an array

The value returned is of the same type
as the type of the index. The second
parameter defines the dimension of the
array for which the lower bound is
returned. It is assumed to be "1" if it
is not specified.

+ 4+ ++F

R T R R T N N e

11.3.4 HBOUND Function

Upper Bound of Array

Definition:

function HSOUND(

arraytype;
I : integer-const)
! scalar;
function HBOUND(
T :

-
:
.
.

type-identifier;
integer-const)
scalar;

Where:

V is a variable which is declared

as an array type.

T is an type identifier declared
as an array.

I is an positive integer-valued

constant expression and is
optional.

The HBOUND function returns the upper
bound of an index to an array. The
array may be specified in two ways:

. an identifier which was declared as
an array tvpe via the tvpe
construct;

. a variable which is of an array

tvpea.

The value returned is of the same type
as the type of the index. The second
parameter defines the dimension of the
array for which the upper bound is
returned. It is assumed to be "i" jif it
is not specified.

Example:
type
GRID = arrayl[-10..10,-10..101 of
REAL;
var
A Parrayl 1..100 1 of ALFA;
B carrayl 1..100 1 of
of arrayl 0..9 1 of CHAR;
LBOUNDC A) is 1
LBOUNDC GRID, 1) is -10
LBOUNDC B, 2) is 0
LBOUNDC BIL11) is 0

The LBOUND Function

S e T R N PP U Y

Example:
type
GRID = arrayl-10..10,-10..10] of
REAL;
var
A : GRID;
B tarrayl 1..100] of
of arrayl 0..9] of CHAR;
HBOUNDC A) is 10
HBOUND(GRID) is 10
HBOUNDC B, 2) is 9
HBOUNDC(BL11) is 9

The HBOUND Function

Execution Library Facilities 123

+ 4+t

PRI PR T b R

11.3.5 SIZEOF Function

Allocation Size of Data

Definition:
function SIZEOF(
) : anytype)
INTEGER;
function SIZEOF(
S ¢ recordtype;
tlrtZy... : tags);
: INTEGER;

Where?

§ is an identifier that has been
declared as a type, or any
variable.

124 Pascal/VS Reference Manual

P L L

The SIZEOF function returns the amount
of storage in bytes required to contain
the variable or a variable of the type
specified.

If S is a record variable or a type
identifier of a record, it may be fol-
lowed by tag list which defines a par-
ticular variant configuration of the
record. In this case the function will
return the amount of storage required
within the record to contain that vari-
ant configuration.

11.4 COMVERSION ROUTINES

TNL SN20-4446 (31 December 81) to SH20-6168-1

This section documents predefined routines which preform conversions from one data

type to another.
acter string conversions.

11.4.1 0ORD Function

Ordinal Value of Scalar

Definition:

function ORD(
S scalar)
INTEGER;

Where:

$ is may be any scalar type or
a pointer.

This function returns an integer that
corresponds to the ordinal value of the
scalar. If the operand is of type CHAR
then the value returned is the position
in the EBCDIC character set for the
character operand. If the operand is an
enumerated scalar, then it returns the
position in the enumeration (beginning
at zero); for example, if COLOR = (RED,
YELLOW, BLUE), then ORD(RED) is 0 and
ORD(BLUE) is 2.

If the operand is a pointer, then the
function returns the machine address of
the dynamic variable referenced by the
pointer, Although pointers can be con-
verted to INTEGERs, there is no function
provided to convert an INTEGER to a
pointer.

Refer to "WRITESTRY on page 141 and "READSTR" on rage 141 for char-

11.%4.2 CHR Funrtion

Integer tc Character Conversion

Definition:

function CHR(
I INTEGER)
CHAR;

Where:

I is an INTEGER expression that is
to be interpreted as a character.

This function is the inverse function to
ORD for characters. That is,
'ORD(CHR(II)=I'" if I is in the subrange:

ORD(LOWEST(CHAR))..ORDCHIGHEST(CHAR)?
If the operand is not within this range
and checking is enabled then a runtime

error will result, otherwise the result
is unpredictable.

Execution Library Facilities 125

+ 4+ ++F

R A

B N R N 2 Tk b s 2R 2t IR IR I

TNL SN20-4446 (31 December 81) to SH20-6168-1

11.4.3 scalar Conversion + 11.%4.4 FLOAT Function
+
+
Integer to Scalar Conversion + Integer to Real Conversion
+
Definition: + Definition:
+
function type-id + | function FLOAT(
I INTEGER) + I INTEGER)
scalar-type; + REAL;
+
Where: +
+ Where:
I is an integer valued expression +
that is to be converted to an + I is an INTEGER valued expression.
enumerated scalar. +
+
+
+
Every type identifier for an enumerated + This function converts an INTEGER to a
scalar or subrange scalar can be used as + REAL. Pascal/V$S will convert an INTEGER
a function that converts an integer into + to a REAL implicitly if one operand of
a value of the enumerated scalar. These + an arithmetic or relation operator is
functions are the inverse of ORD. + REAL and the other is INTEGER. This
+ function is useful in making the conver-
+ sion explicit in the program.
Example:
type
DAYS = (SUN, MON, TUES, WED,
THU, FRI, SAT);
DAYS(0) is SUN
DAYS(3) is WED
DAYS(6) is SAT
DAYS(7) is an error
BOOLEAN(O) is FALSE
BOOLEANC(1) is TRUE

The Enumerated Scalar Function

126 Pascals/VS Reference Manual

11.4.5_ TRUNC Function - 4.6 OUND Functio

Real to Integer Conversion Real to Integer Conversion

Definition: Definition:

function TRUNC(function ROUND(

R : REAL) R : REAL)
INTEGER; ¢ INTEGER;
function TRUNC(function ROUND(
S ¢ SHORTREAL) S ¢ SHORTREAL)
: INTEGER; : INTEGER;

Where: Where:

R is a REAL valued expression. R is a REAL valued expression.

S is a SHORTREAL valued expression. | S is a SHORTREAL valued expression.
This function converts a REAL expression This function converts a REAL expression
to an INTEGER by truncating the oparand to an INTEGER by rounding the operand.
toward zero. This function equivalent to
Examples: if R > 0.0 then

ROUND := TRUNC(R + 0.5)

TRUNCC 1.08) is 1 else

TRUNCC 1.1) is 1 ROUND := TRUNC(R - 0.5)

TRUNCC 1.9) is 1

TRUNCC 0.0) is 0 Examples:

TRUNC(-1.0) is -1

TRUNC(-1.1) is -1 ROUND(1.0) is 1

TRUNC(-1.9) is -1 ROUNDC 1.1) is 1

ROUNDC 1.9) is 2
ROUNDC 0.0) is 0
ROUND(-1.0) is -1
ROUND(-1.1) is =1
ROUND(-1.9) is -2

Execution Library Facilities 127

+++++

USRI O R T

11.6.7 STR Function
Convert to String
Definition:
function STR(
X CHAR or packed
arrayll..n] of
CHAR)
: STRING;
Where:

X is CHAR or packed array[l..nl of
CHAR expression.

128 Pascal/VS Reference Manual

PN B

This function converts aither a CHAR or
packed arrayl[1..n] of CHAR to a STRING.
Pascals/VS will implicitly convert a
STRING to a CHAR or packed arrayll..n]
of CHAR on assignment, but all other
conversions require you to explicitly
state the conversion. You may assign a
CHAR to an packed arrayli..nl] of CHAR by
either:

var
ADC : ALPHA;
CH : CHAR;
AOC := STR(CH);

AOC := ' '; AOC[1] := CH;

+ 4+

SR R I T T I N AR PRI

L R T I T AR

11.5 MATHEMATICAL ROUTINES

These routines defined various mathematical

11.5.1 MIN Function

MINimum Value of Scalars

Definition:

function MIN(
EOQ,

én scalar-type)
scalar-type;

Where:

Ei is an expression of a scalar
type. All parameters must be
of the same type except where
noted below.

The MIN function returns the minimum
value of two or more expressions. The
parameters may be of any scalar type,
including REAL. The parameters may be a
mixture of INTEGER and REAL expressions,
in which case, the result will be of
type REAL. In all other cases, the
paEameters must be conformable to each
other.

+

+ 4+ ++

A R R R L U SR

LI T S Ay

transformations.

11.5.2 MAX Function

Maximum Value of Scalars

Definition:

function MaX(
EO,
én scalar-type)
scalar-type;

Where:

Ei is an expression of a scalar
type. All parameters must be
of the same type except where
noted below.

The MAX function
value of two or more parameters.

returns the maximum
The

rarameters may be of any scalar type,

including REAL.
of INTEGER
which case,
REAL. In all other cases,

and REAL

They may be a mixture
expressions,
the result will be of type
the parame-

in

ters must be conformable to each other.

Execution Library Facilities

129

11.5.3 PRED Function

Predecessor Value of a Scalar

Definition:

function PRED(
S scalar)

scalar;

Where:

S is any scalar expression.

This function returns the predecessor
value of the parameter expression. The
PRED of the first element of an enumer-
ated scalar is an error. If the option
%CHECK is ON, a runtime error will be
raised if the PRED of the first element
is attempted. If the checking is not

performed, the results of the PRED of
the first value is not defined.
PRED(TRUE) is FALSE and PRED('B') is

'"AY. The PRED of an INTEGER is equiv-
alent to subtracting one. PRED of a
REAL argument is an error.

130 Pascal/VS Reference Manual

11.5.4_SUCC Function

Successor Value of a Scalar

Definition?®

function SUCC(
S ¢ scalar)
: scalar;

Where:

S is any scalar expression.

This function returns the successor val-
ue of the parameter expression. The
SUCC of the last element of an enumer-
ated scalar is an error. If the option
%CHECK is ON, a runtime error will be
raised if the SUCC of the last element
is attempted. If the checking is not
performed, the results of the SUCC of
the last value is not defined.
SUCC(FALSE) is TRUE and SUCC('B') is
'c'. The SUCC of an INTEGER is equiv-
alent to adding one. SUCC of a REAL
argument is an error.

11.5.5 _0ODD Function

e s B LA A 1R |

Test for Integer is 0Odd

Definition:

function 0DD(
I INTEGER)
BOOLEAN;

Where:

I is an INTEGER to be tested
for being odd.

This function returns TRUE if the param-
eter I is odd, or FALSE if it is even.

11.5.6 __ABS Function

Absolute Value

Definition:

function ABS(
I ¢ INTEGER)

: INTEGER;

function ABS(
R REAL)
REAL;

Where:

I is an INTEGER expression.
R is a REAL expression.

The ABS function returns either a REAL
value or an INTEGER value depending the
type of its parameter, The result is
the absolute value of the parameter.

Execution Library Facilities 131

11.5.7 SIN Function 11.5.8 €0S Function

Compute Sine Compute Cosine
Definition:? Definition:
function SIN(function C0S¢(
X REAL) X REAL)
REAL; : REAL;
Where: Where:
X is an expression that evaluates X is an expression that evaluates
to a REAL value. to a REAL value.
The SIN function computes the sine of The CO0S function computes the cosine of
parameter X, where X is expressed in the parameter X, where X is expressed in
radians. radians.

132 Pascal/VS Reference Manual

11.5.9 _ARCTAN Function

Compute Arctangent

Definition:

function A§CTAN(

REAL)
REAL;
Where:

X is an expression that evaluates
to a REAL value.

11.5.10 EXP Function

Compute Exponential

Definition:

function EXP(
X : REAL)
: REAL;

Where:

X is an expression that evaluates
to a REAL value.

The ARCTAN function computes the
arctangent of parameter X. The result is
expressed in radians.

The EXP function computes the value of
the base of the natural logarithns, e,
;aiifd to the pouwer expressed by parame-
er X.

Execution Library Facilities 133

11.5.11 LN Function 11.5.12 SQRT Function

Compute Natural Log Compute Square Root
Definition: Definition:
function LN(function SQRT(
X REAL) X : REAL)
REAL; : REAL;
Where: Where:
X is an expression that evaluates X is an expression that evaluates
to a REAL value. to a REAL value.
The SQRT function computes the square
The LN function computes the natural root of the parameter X. If the argu-
logarithm of the parameter X. ment is less than zero, a run time error

is produced.

134 Pascal/VS Reference Manual

11.5.13 SQR FUnction

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ 11.5.14 RANDOM Function
+
+ .
Compute Square + Compute a Random Number
+
Definition: + Definition:
+
function SQR(+ function RANDOM(
X ¢ REAL): REAL;] S : INTEGER) : REAL;
+
function SQR(+
X ¢ INTEGER): INTEGER; + Where:
+
+ S is an expression that evaluates
Where: + to an INTEGER value.
+
X is an expression that evaluates +
to a REAL or INTEGER value. +
+ The RANDOM function returns a pseudo
+ random number in the range >0.0 and
+ <1.0. The parameter S is called the
The SQR function computes the square of + seed of the random number and is used to
the argument. If the argument is of + specify the beginning of the sequence.
tvype REAL, then a REAL result is + RANDOM always returns the same value
returned, otherwise the function + when called with the same non zero seed.
returns an INTEGER. + If vyou pass a seed value of 0, RANDOM
+ will return the next number as generated
+ from the previous seed. Thus, the gen-
+ eral way to use this function is to pass
+ it a non zero seed on the first invoca-
+ tion and a zero value thereafter.

Execution Library Facilities 135

TNL SN20-4446 (31 December 81) to SH20-6168-1

11.6 STRING ROUTINES

These routines provide convenient means of operating on string data.

+ 11.6.1 LENGTH Function 11.6.2 MAXLENGTH Function

+ .

+

+ Length of String Maximum Length of a String
+

+ Definition: Definition:

+

+ function LENGTH(function MAXLENGTH(

+ S STRING) S : STRING)

+ 0..32767; P 0..32767;

+

+

+ Where: Where:

+

+ S is a STRING valued expression. S is a STRING valued expression.
+

+

+

+

+ This function returns the current length This function returns the maximum length
+ of the parameter. The value will be in of the parameter string. The value will
+ the range 0..32767. + be in the range 0..32767.

136 Pascal/VS Reference Manual

+
+
+
+
+

R R,

++F bbbt b et b—t+

TNL SN20-4446 (31 December 81) to SH20-6168-1

11.6.3 SUBSTR Function + 11.6.% DELETE Function
+
+
Obtain Substring + Delete Substring
+
Definition: + Definition:
+
function SUBSTR(+ function DELETE(
const SOURCE STRING; + const SQURCE STRING;
START INTEGER; + START INTEGER;
LEN INTEGER): STRING; + LEN INTEGER): STRING;
+
+
function SUBSTR(function DELETE(
const SOURCE STRING; const SOURCE STRING;
START INTEGER): STRING; START INTEGER): STRING;
Where: + Where:
SOURCE is a STRING expression from +
which a substring will be + SOURCE is a STRING expression from
returned. + which a portion will be
START is an INTEGER expression that] deleted.
designates the first position + START is an INTEGER expression that
in the SOURCE to be returned. + designates the first position
LEN is an INTEGER expression that | in the SOURCE to be deleted.
defines the number of + LEN is an INTEGER expression that
characters to be returned. + defines the number of
| characters to be deleted.
+
+
+
+

The SUBSTR function returns a substring
from the speci fied source string
(S0URCE). The second parameter (START)
specifies the starting position within
the source from where the substring is
to be extracted. (The first character
of the source string is at position 1).
The third parameter (LEN) determines the
length of the substring. If the length
is omitted, the substring returned will
be the remaining portion of the source
string from position START.

The value of START+LEN-1 must be less
than or equal to the current LENGTH of
the string, otherwise, an error diagnos-
tic will be produced at run time.

Examples:

SUBSTR('ABCDE',2,3) yields 'BCD'
SUBSTR('ABCDE',1,3) yields 'ABC'
SUBSTR('ABCDE',4) yields 'DE!

SUBSTR('ABCDE',1) yields 'ABCDE'
SUBSTR('ABCDE',2,5) is an error

"the length parameter

The DELETE function returns the source
string (SOURCE) with a portion of the
string removed. The second parameter
(START) specifies the starting position
within the source where characters are
to be deleted. (The first character of
the source string is at position 1).
The third parameter (LEN) specifies the
number of characters to be deleted. If
is omitted, all
remaining characters are deleted; more
precisely, the string 1is truncated
beginning at position START.

An attempt to delete a portion of the
source beyond its length is an execution
time error.

Examples:

DELETE('ABCDE',2,3) yields 'AE"'
DELETE('ABCDE',3) yields 'AB'
DELETE('ABCDE',3,1) yields "ABDE'
DELETE('ABCDE',1) yields '!'

Execution Library Facilities 137

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ 4+ A+

B T i i

11.6.5__TRIM Function + 11.6.6 LTRIM Function
+
+

Remove Trailing Blanks + Remove Leading Blanks
+
Definition: + Definition:
+
function TRIM(+ | function LTRIM(C
const SOURCE : STRING) + const SOURCE : STRING)
¢ STRING; + : STRING;
+
+
Where: + Where:
+
SOURCE is the STRING to be trimmed. + SOURCE is the STRING to be trimmed.

+
+
+
+

The TRIM function returns the parameter + The LTRIM function returns the parameter

value with all trailing blanks removed. + value with all leading blanks removed.
+

Example: + Example:
+

TRIM('* A B ') yields ' A B' + LTRIM(" A B ') yields '"A B '

TRIMC? ') yields "' + LTRIMC? ') yields '!
+

+ e+

138 Pascal/VS Reference Manual

+
+
+
+
+

T R R Rk

B Y

TNL SN20-4446 (31 December 81) to SH20-6168-1

11.6.7 COMPRESS Function + 11.6.8 IMDEX Funeticn
+
+
Remove Multiple Blanks + Lookup String
+
Definition: + Definition:
+
function COMPRESS(+ function INDEX(
const SOURCE STRING) + const SOQOURCE STRING:;
: STRING; + const LOCKUP STRING)
+ 0..32767;
+
Where: +
+ Where:
SOURCE is a the STRING expression +
to be compressed. + SOURCE is a STRING that contains
+ thae data to be compared against.
+ LOOKUP is the data to be looked
+ up in the SOURCE.
+
+
The COMPRESS function replaces multiple +
blanks with a single blank.
+ The INDEX function compares the second
Example: + parameter against the first and returns
+ the starting index of the first instance
COMPRESS('A B CD ') vields A B CD ' + where LOOKUP begins in SOURCE. If there
+ are no occurrences, then a =zero 1is
+ returned.
+ .
+ Examples:
+
+ var
+ S : STRING;
+ e
+ S := YABCABC':
+ e
+ INDEX(S,'BC') yields 2
+ INDEX(S,'X") yields 0

Execution Library Facilities 139

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ 11.6.9 TOKEN Procedure + trailing blanks are ignored. If there
+ + is no token in the string, P0S is set to
+ + LENGTH(SCOURCE)+1 and RESULT is set to
+ Find Token + all blanks.
+ +
+ A token is defined to be any of:
+ Definition: +
+ + e Pascal/VS identifier - 1 +to 16
+ procadure TOKEN(+ alphanumeric characters, '$' or an
+ var POS : INTEGER; + underscore. The first letter must
+ const SOURCE : STRING; + be alphabetic or a '$'.
+ var RESULT : ALPHA);
+ . Pascal/VS unsigned integer = see
+ page 18.
+ Where:
+ . The following special symbols:
+ POS is the starting index in SOURCE
+ of where to loock for a token, it + - * / -> d ¢
+ is set to the index of where to = <> < <= >= > !
+ resume the search on the next () [] ' " %
+ use of TOKEN.] & && Il - == #
+ SOURCE is a STRING that contains : 3 = . » ..
+ the data from which a token { } (% %) /¥ x/
+ is to be extracted.
+ RESULT is the variable which will
+ be returned with token found. Example:
+
+ I := 23
+

TOKENCI,', Token+', RESULT)

The TOKEN procedure scans the SOURCE
string looking for a token and returns
it as an ALPHA. The starting position
of the scan is passed a: the first
parameter. This parameter is changed to
reflect the position which the scan is
to be resumed on subsequent calls.
Leading blanks, multiple blanks and

I is set to 8
RESULT is set to '"Token

TOKEN would return the same if
I were set to 3, that is,
leading blanks are ignored.

T A E R R Rk e

R

1490 Pascal/VS Reference Manual

+++ + +

R IR A A R T T TR T T T Ay

PR R ek T I S T S A S S AR AT U R SR

+
+

+

+ + +

11.6.10 READSTR

Read Data from a STRING

Definition:

procedure READSTR(
const s : STRING;
v ¢ see below);

Where:

s 15 a STRING expression that
is to be used for input.

v is a list of one or more
variables, each must be one
of the following types:

INTEGER (or subrange)

CHAR (or subrange)
- REAL
- SHORTREAL
- STRING

packed array of CHAR

The READSTR procedure reads character
data from a source string into one or
more variables. The actions of READSTR

+ + + + +

R T R TR N S R I R S T T S S R SR PR R

TNL SN20-4446 (31 December 81) to SH20-6168-1

11.6.11 WRITESTR

Write Data to a STRING

Definition:

procedure WRITESTR(
var s STRING;
e : see below);

Where:

s is a STRING variable

e is an expression of one of the
following types:
= INTEGER (or subrange)

CHAR (or subrange)

REAL

SHORTREAL

BOOLEAN

STRING

packed arrayll..n] of CHAR

Pascal/VS accepts a special para-
meter format which allows you.
to specify a length of the result.

are identical to that of READ except + The WRITESTR procedure converts expres-
that the source data is extracted froma + sions into character data and stores the
string expression instead of a text + data into a string variable. The seman-
file. See "READ and READLN (TEXT + tics of WRITESTR are identical to WRITE,
Files)" on page 109. + except that the target of the data is to
+ a STRING rather than to a text file.
As in the READ procedure, variables may + See "WRITE and WRITELN (TEXT Files)" on
be qualified with a field length expres- + page 112.
sion. See the example below. +)
+ As in the case of WRITE, the expressions
+ being converted may be qualified with a
+ field length expression.
+
var +
I,J: INTEGER; +
S + STRING(100); +
S1 : STRING(100); var
CH CHAR; I,J: INTEGER:;
cC packed arrayl1..10] of CHAR; S ¢ STRING(100);
. R : REAL;
. CH CHAR;
§ := Y36 245ABCDEFGHIJK'; .
READSTR(S,I,J:3,CH,CC:5,51); .
I :=10; J = -123;
R = 3.14159;
the variables would be assigned: CH := 'x';
WRITESTR(S,I:3,J:5,"'ABC',CH,
I : 36 R:5:2);
J 2%
CH 5
CcC 'ABCDE ! the variable S would be assigned:
51 'FGHIJK';
LENGTH(S1) 6 ' 10 -123ABC* 3.14"
The READSTR Procedure + The WRITESTR Procedure
+
+

Execution Library Facilities 141

TNL SN20-4446 (31 December 81) to. SH20-6168-1

+

B R &k ok I o s

P I T I P A A

11.7 GENERAL ROUTINES

These routines provide several useful features of the Pascal/VS runtime environment.

11.7.1 Tk"CE Procedure

Routine Trace

Definition:

procedure TRACE(

var F TEXT);

F is the file that will receive
the trace listing

This procedure displays the current list
of procedures and functions that are
pending execution (i.e. save chain).
Each line of the listing contains the
name of the routine, the statement num-
ber where the call took place, the
return address in hexadecimal and the
name of the module that contained the
calling procedure.

The file F is the TEXT file to which the
information is to be written.

142 Pascal/VS Reference Manual

F++++F A F++

+ 4+ + +

11.7.2 HALT Procedure

Halt Program Execution

Definition:

procedure HALT;

This routine halts execution of an Pas-
cal’/VS program. That is, this can be
considered to be a return from the main
program.

+ o+

11.8 SYSTEM INTERFACE ROUTINES

These routines provide interfaces to system facilities: in general they are depend-
ent on the implementation of Pascal’Vs.

L IR PR R

R I L S A PR PR

11.8.1 DATETIME Procedure + 11.8.2 CLOCK Function
+
+
Get Date and Time + Get Execution Time
+
Definition: + Definition:
+
procedure DATETIME(+ function CLOCK : INTEGER;
var DATE, +
TIME : ALFA); +
+
whera:
+ The value returned is the number of
DATE is the returned date. + microseconds the program has been run-
TIME is the returned time. + ning. Note: 1In an MVS system: the time
+ is "TASK"™ time; and in a CMS systaem: the
+ time is "CPU virtual” time.

This procedure returns the current date
and time of day as two ALFA arrays. The
format of the result is placed in the
first and second parameters respactive~
ly:

mm/dd/yy

HH:MM:SS

where:

mm is the month expressed as a two
digit value.

dd is the day of the month.

vy is the last two digits of the
vear.

HH is the hour of the day expressed
in a 24 hour clock.

MM is the minute of the hour.

SS is the second of the minute.

Execution Library Facilities

143

++++++ e+ +

+

11.8.3 PARMS Function

Get Execution Parameters

Definition:

function PARMS STRING;

The PARMS function returns a string that
was associated with initial invocation
of the Pascals/V$S main program.

144 Pascal’/VS Reference Manual

PRI o JC T T

++++++

11.8.% TCOD ocedure

Set Program Return Code

Definition:

procedure RETCODE(
RETVALUE : INTEGER);
where?

RETVALUE is the return code to be
passed to the caller of the
Pascal/VS program. The value
is system dependent.

The value of the operand will be
returned to system when an exit is made
from the main program. If this routine
is called several times, only the last
value specified will be passed back to
the system.

PR T T kS P AR

B T I kI b T T T A e e I R S S P A

+

+ 4+ +

TNL SN20-4446 (31 December 81) to SH20-6168-1

12.0 THE % FEATURE

Syntax:

include-statement:

check-statement:

-==> % ===> CHECK —J-=--====—====—mmmmeoqe e L 7o >
---> POINTER =----- > ---> OFF --->
---> SUBSCRIPT ~-->
---> SUBRANGE ---->

-==> FUNCTION -=--->
-—-> CASE --———==—- >
--=> TRUNCATE ---->
print-statement:
-==> % =---=> PRINT ---=7--- > 0N -——--7—————m—- e m e — e >
I-—-> OFF ———>I
list-statement:
-—=> % =-=--> LIST ———I———> ON —-=-—-- T TTTTTTTTTTTTTTTTT s >

---> OFF --->

page-statement:

===> % ===> PAGE —===---m-m s e e e >
cpage-statement:
-==> % =-=-> CPAGE ---> unsigned-integer -—-=----—moumcue e >

title-statement:

-==> % ===> TITLE ---> any-character-string —---------=-------coco——- >

skip-statement:

-==> % —--—-> SKIP ---> unsigned-integer ----=-====----—------ memmmsess >

margins—-statement:

~==> % ===> MARGINS ---> unsigned-integer unsigned-integer ----———- >

The % feature of Pascals/VS is used to + which causes the compiler to ignore all
enable or disable a number of compiler + text between the statement and the

options and features. The compiler + end-of-line.
treats a % command as a trigger symbol

The % Feature

145

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ + +

U LU U Vi

12.1 THE %INCLUDE STATEMENT

The INCLUDE statement causes source from
a library file to be inserted into the
input stream immediately after the cur-
rent line. More precisely, the compiler
is directed to begin reading its input
from a library file; when the end of the
file 1is vreached, the compiler will
resume reading from the previous source.
forms of the INCLUDE

There are two

statement:
. %ZINCLUDE library-name(member-name)
. %INCLUDE member-name

The first form references a library file
and a specific member in the file.5

The second form references a specific
member from a default library.

program ABC;
const

%include CONSTS
type

%include TYPES
var

%include VARS
%include LIB1(PROCS)
begin

end.

Example of ZINCLUDE statement

12,2 THE %CHECK STAYEMENT

The CHECK statement gives you the abili-
ty to enable or disable the runtime
checking features of Pascal/Vs. The
checking may be enabled for part or all
of the program. The compiler will check
the following:

. use of a pointer whose value is NIL
(POINTER).

U use of a subscript which is out of
range for the array index
(SUBSCRIPT).

. lack of an assignment of a value to

a function before exiting from the
function (FUNCTION).

I TR Tk o T ok ok s T T S S A e e A R A TR b T T T Ik b o ok T T T S S S S SRR R R A

is not
for the target

. assignment of a value thick
in the proper ranoz
variable (SUBRANGE]}.

. use of the predefined functions PRED
or SUCC where the result of the
function is not a value in the type,
i.e. underflow or overflow of the
value range (SUBRANSGE).

. the value of a CASE statement selec-
tor which is not equal to any of the
CASE labels (CASE).

L the value of a string will be
checked to be sure it will fit into
the target string on an assignemnt
(TRUNCATE).

If the check option is missing, then all
of the above checks will be assumed
applicable. For example, '%CHECK ON'
activates all of the checks. '%CHECK
POINTER OFF' will disable the check on
pointer references. The default is:

% CHECK ON

The Z%CHECK statement, like the other
statements in this section, is a direc-

tion to the compiler. Its effect is
based on where it appears in the text
and is not subject to any structuring

established by the program.

12.3 THE %PRINT STATEMENT

The PRINT statement is used to turn on
and off the printing of source in the
listing. The default is:

% PRINT ON

12.4 THE %LIST STATEMENT

The LIST statement is used to enable or
disable the pseudo-assembler listing of
the Pascal/VS compiler. This option
only has affect if the LIST compiler
options is enabled.

It is often required
pseudo-assembler listing
svall section of a module,
it suppressed elsewhere.
done as follows:

to view the
for only a
and to have
This can be

1. 1Insert a line at the beginning of
the module that consists of

%#LIST OFF

5 Under VM/CMS, 0S5, and MVS/TS0 operating environments, the specified library
name is actually the "DD name"™ of a partitioned data set (which may be con-

catenated).

146 Pascal/VS Reference Manual

If the library name is omitted, the default is SYSLIB.

i A T A T i o T I T sppragears

2. At the beginning of each section of
code for which an assembler listing

is required, insert
%LIST ON
3. At the end of each code section

insert
%LIST OFF

4. Compile the module with the LIST
option.

12.5 THE %PAGE STATEMENT

The PAGE statement is used to force a
skip to the next page on the output
listing of the source program.

12.6 _THE %CPAGE STATEMENT

The CPAGE statement is used to force a
rage eject if there are less than a spe-
cified number of lines left on the cur-
rent page of the output listing. This
is useful to make sure there is suffi-
cient room for a unit of code, thereby
not having it split across two pages.
Example:

- % CPAGE 30

12.7 THE %TITLE STATEMENT

The TITLE statement
title

is used to set the
in the listing. It also causes a

P Rk

TNL SN20-4446 (31 December 81) to SH20-6168-1

page skip. The title is printed as spe-
cified on the statement, there is no
change from lower case to upper case.
The default is no title.

1.8 THE %SKIP STATEMENT

The SKIP statement is used to force one
or more blank lines to be inserted into
the source listing.

12.9 THE %MARGINS STATEMENT

The MARGINS statement redefines the left
and right margins of the compiler input.
The compiler skips all characters that
lie outside the margins. The statement
has the form

%MARGINS m n

where "m" is the new left margin and "n"

"is the new right margin.

If the MARGINS statement appears in a
library member which is being "included"”
by the %XINCLUDE statement, the new mar-
gins wWill have affect for the duration
of the member only. When the end of the
member is reached and the previous
source is resumed, the margin settings
witl revert back to their previous con-
dition.

The % Feature

146.1

"NL SN20-4446 (31 December 81) to SH20-6168-1

146,2 PascalsV¥S Reference Manual

APPENDIXES

"The Space Type" on page 149

"$tandard Identifiers in Pascal/VS" on page 151
"Syntax Diagrams" on page 153

"Index to Syntax Diagrams" on page 165

"Glossary™ on page 167

APPENDIXES 147

S A e e e e e R I S S PO PR PP

A.1 THE SPACE DECLARATION

A.0 THE SPACE TYPE

Syntax:

space-type:

—-==> space ---> [--->{constant-expr}---> 1 ---> of -=->{typel == >

The need arises to represent data within
storage areas which do not have the same
fixed offset within each instance of the
area. Examples of this include entries
within a directory, where each entry may
be of variable length, and processing
variable length records from a buffer.
To solve this problem, PascalsV$s pro-—
vides the space structure.

A variable declared with the space type
has a component which is able to 'float!
over a storage area in a byte oriented
manner, Space variables are accessed by
following the variable's name with an
integer index expression enclosed in
square brackets. The index represents
the offset (in bytes) within the space
storage where the data to be accessed
resides. The offset is specified with
an origin of zero.

The constant expression which follows
the space qualifier in the type defi-
nition represents the size of the stor-

:ge are2a (in bytes) associated with the
vpe.

The component type of the space may be
of any type except a file type.

An element of a space may not be passed
as a var parameter to a routine. Howev-
er, an element may be passed as a const
or value parameter.

A.2 SPACE REFERENCING

A component of a space is selected by
placing an index expression, enclosed

Rl R R R R R o R Rk ko A a AR PRI

within square brackets, after the space
variable (just as in array references).
The indexing expression must be of type
INTEGER (or a subrange thereof). The
value of the index is the offset within
the space at which the component is to
be accessed. The unit of the index is
the byte. The index is always based
upon a zero origin. The component will
be of the space base type.

If the "%CHECK SUBSCRIPT' option is ena-
bled, the index expression will be
checked at execution time to make sure
that the computed address does not lie
outside the storage occupied by the
space. An execution time error diagnos-
tic will occur if the value is invalid.
(For a description of the CHECK feature
see "The %XCHECK Statement™ on page 146).

var
S5: spacel100] of
record
A,B: INTEGER
end;
begin

{base record begins
at offset 10 within

space }
SL10].A := 26;
S[101.B := 0;

end;

Space Referencing Examples

The Space Type 149

-+

+++ +

+ +

Fhtt o+ + 4+

+ —

A standard

declared

start of your program.

identifier

is the name of a
constant, type, variable or routine that
is predefined in Pascal/Vvs.

B.0 STANDARD IDENTIFIERS IN PASCAL/VS

the name if you wish;
better to use the name according to

The name is predefined meaning.

in every module prior to the
You may redefine

however, it

is
its

The identifiers that are predefined are:

Standard Identifiers
identifier form description
ABS function compute the absoluta value of an INTEGER or REAL
ALFA type array of 8 characters, indexed 1..ALFALEN
ALFALEN constant HBOUND of type ALFA, value is 8
ALPHA type array of 16 characters, indexed 1..ALPHALEN
ALPHALEN constant HBOUND of type ALPHA, value is 16
ARCTAN function returns the arctangent of the argument
BOOLEAN type data type composed of the values FALSE and TRUE
CHAR tvpe character data type
CHR function convert an integer to a character value
CLOCK function returns the number of micro seconds of execution
CLOSE procedure close a file
COoLs function returns current column on output line
COMPRESS function replaces multiple blanks in a string with one blank
Ccos function returns the cosine of the argument
DATETIME procedure returns the current date and time of day
DELETE function returns a string with a portion removed
DISPOSE procedure deallocate a dynamic variable
EOF function test file for end of file condition
EOLN function test file for end of line condition
EXP function returns the base of the natural log (e)

raised to the power of the argument
FALSE constant constant of type BOOLEAN, FALSE < TRUE
FLOAT function convert an integer to a floating point value
GET procedure advance file pointer to next element of input file
HALT procedure halts the programs execution
HBOUND function determine the upper bound of an array
HIGHEST function determine the maximum value of a scalar
INDEX function looks up one string in another
INPUT variable default input file
INTEGER type integer data type
LBOUND function determine the lower bound of an array
LENGTH function determine the current length of a string
LN function returns the natural logarithm of the argument
LOWEST function detarmine the minimum value of a scalar
LTRIM function returns a string with leading blanks removed
MARK procedure routine to create a new heap
MAX function determine the maximum value of a list of scalars
MAXINT constant maximum value of tvype INTEGER
MAXLENGTH function determines the maximum length of a string
MIN function determine the minimum value of a list of scalars
MININT constant minimum value of type INTEGER
NEW procedure allocate a dynamic variable from most recent heap

Standard Identifiers in Pascal/Vs

151

+

b ——— fe—t + +

Standard Identifiers Continued

identifier form description

oDD function returns TRUE if integer argument is odd

ORD function convert a scalar value to an integer

QUTPUT variable default output file

PACK procedure copies an array to a packed array

PAGE procedure skips to the top of the next page

PARMS function returns the system dependent invocation parameters

PDSIN procedure open a file for input from a partitioned data set

PDSOUT procedure open a file for output from a partitioned data set

POINTER type type to permit passing arbitrary pointers a routine

PRED function obtain the predecessor of a scalar

PUT procedure advance file pointer to next element of output file

RANDOM function returns a pseudo-random number

READ procedure routine to read data from a file

READLN procedure routine to read the end of line character of TEXT file

READSTR procedure converts a string to values assigned to variables

REAL type floating point represented in 370 long floating point

RELEASE procedure routine to destroy one or more heaps

RESET procedure open a file for input

RETCODE procedure sets the system dependent return code

REWRITE procedure open a file for output

ROUND function convert a floating point to an integer by rounding

SEEK procedure positions an opened file at a specific record

SHORTREAL type floating point represented in 370 short floating point

SIN function returns the sine of the argument

SIZEOF function detaermine the memory size of a variable or type

SQRT function returns the square root of the argument

SQR function returns the square of the argument

STR function convert an array of characters to a string

STRING tvpe a type for an array of char whose length varies during

execution up to a maximum length

STRINGPTR type a type for dynamically allocated strings of an
execution determined length

SUBSTR function returns a portion of a string

SUCC function obtain the successor of a scalar

TERMIN procedure open a file for input from the terminal

TERMOUT procedure open a file for output from the terminal

TEXT type file of CHAR

TOKEN procedure extracts tokens from a string

TRACE procedure writes the routine return stack

TRIM function returns a string with trailing blanks removed

TRUE constant constant of type BOOLEAN, TRUE > FALSE

TRUNC function convert a floating point to an integer by truncating

UNPACK procedure copies a packed array to an array

UPDATE procedure opens a file for both input and output

WRITE procedure routine to write data to a file

WRITELN procedure routine to write end of line to a TEXT file

WRITESTR procedure converts a series of expressions into a string

152

Pascals/VS Reference Manual

+ 4+

+ 4 +

actual-parameters:

C.0 SYNTAX DIAGRAMS

> (I L(>{expr} I l >) J
>

array-structure:

-=->{id:type}---> (--->

[; . "
—=1--1-->{constant- Yomy-> 2 {p tit Y=y p--->)
[T feenstentrexer) 2 L Lrepetition) popy
L< ——————————————————— p e e
array-type:

-<

———> array [———I———>{index-type]————T-——>] of —>{type}
v < y <

___________________]

~——> packed]

assert-statement:

-==> assert --->{expr}

assignment-statement:

T:::>{varlable} > = >{expr}

.___—.-___..____,_...._—_—-..._...—_-._-.__.-_—_—__—_—_-._____.__.___

>{id: functlon)———>J

base-scalar-type:

— T —>{id!scalar-type}
——>{subrange-scalar-type}

r—>{enumerated- scalar-type}———>]

5d

case-statement:

—> case —>{expr}—> of —>

.]

>{range} T > e >{statement}
l [< , <
< 3 <

?

A L,

——-> otheruise ---y--- >{statement} —————— >
;o2 lsta kb

e e J

—> end

Syntax Diagrams

153

+ 4+

+ 4 + +

154

check-statement:

Pascals/VS Reference Manual

———> % —==> CHECK =-=7-——==—===—==———=———7=—= I——-> ON —-——-- 2 I >
—-—=> POINTER —-—-—-- —~=> 0OFF --->
—-—-> SUBSCRIPT --->
---> SUBRANGE ---->
-~-> FUNCTION ---->
-—=> CASE --—————-
-—-=> TRUNCATE-=---
cpage-statement:
——=> % ===> CPAGE ---> unsigned-integer -—-----—--=<--------s--—=ssmommEmmTmeT >
compound-statement:
—-> begin ———I———>{statement}———T——-> end >
< ; <
constant:
———T———>{unsigned-constant} >
l ; t >J >{un5igned-number}———>J
constant-del:
—> const l >{id} > = >{constant-expr} > >
<
continue-statement:
——=> eoNtinuUE ———==mm—m—e— e e EeE e m oo m— oo oS — s SS oo >
declaration:
——a——>{label-dcl} >
>{constant-dcl} >
——> {type~dcl} >4
>{var-dcl} >4
——-> {def~dcl}——~—-==—~ >
L-——->{static~dcl}-——-—-=-- >
L —-——>{value-decl}-—-—=--—-- >4
>{routine-dcl} > >
def-dcl:
——————— > dgf --=--p-—-p-—--7--—>{id}---y-—-> -==>{typel-=--> ; ———p-—==—————>
I"'> ref "‘>I T K=== ""T T
D e]

R RS

directive:

——1——> FORWARD >
F===> EXTERNAL === oo e >
F===> FORTRAN == e e e e o >
P> MAIN — o e e e e >
F-==> REENTRANT —--=-mommmmmmme e >

empty-statement:

enunerated-scalar-type:

> (

L<__:i{idz T >

’

expy
constant-expr:

——>{simple-expression}

> = >{simp1e-expression}———>J
b—> <> —>
f——> < >
———> = ——>
2> 5% w———>)
F—> > >

L—5 in —>

factor:
—>{function-call}
t——>{variable} >4
—>{set-constructor} >4
——> (—>{expr} >) >4
~==->{structured-constant}------- T e e e >
——> not —>{factor} >
——>{unsigned-constant} >
field:
>{id} - ; . - —]
- - constant-expr}--->) >
field-list:
. [: il
-———[———>{f|xed—part} > 3 N >{variant-part} I > ; N

Syntax Diagrams

155

156

file-type:
—> file of —>{typel >

Y [>{field} T > 2 >{typel} >
l [L) < I
<

for-statement:

—> for >{id} > = >{exprl} ‘ > 50 " 1
> ounto —>

>{expr}———>]

<
[> do >{statement} >

formal:

———-———T:::i X:;st __>J L<___{idi I > 3 >{id: typel} >

’

» {id}] > @ >{id:typel >4

— &

—> {procedure-heading} >-

>function-heading} >

formal —parameters:
> (>{formall >) >
» |]
>

;s <

function-call:

—>{id:function}—> {actual-parameters} >

function-heading:
——> function —>{id}—>{formal-parameters}—> : —>{id:type}—>

agoto-statement:
> goto —>{label} >

Pascal’/V5 Reference Manrual

TNL SN20-4446 (31 December 81) to SH20-6168-1

>
—> {digijt}———>
—>{letter} -—~—>{letter}——————>}———>
l -—-->{underscore}-->]
(]
if-statement:
—> if —>{expr}—> then —>{statement} L__ J >
> else —>{statement}—>
include-statement:
-==> % —---> INCLUDE =---> id ---I ---------- et ——————— I ---------------- >
—==> (===> jid ===>) =-==>
index-tvype:
_ -———>(enumerated-scalar-type}———>1
——t+—>{idiscalar~-typeal} \J >
——>{subrange-scalar-type} >
label:
———r——~>{unsigned-integer} >
m==>{id}-mmm e >
label-decl:
—> label —[——>{1abe1} > ; >
< , < | ,
leave-statement:
i 11 - R i >
list-statement:
-==> % ===> LIST =---7-—- e B >
1225 oFF =57
margins-statement:
-==> % -==> MARGINS ---> unsigned-integer unsigned-integer =-=-—=e————e-—on >
module:
———T_——>{program-module} >
----->{s.egmen‘t-module}---2"-l

Appendix €. Syntax Diagrams 157

TNL SN204446 (31 December 81) to SH20-6168-1

pacge-statement:

mm=> % mm=> PAGE == mm o e e e e e e —————

pointer-type:!
—> 3 —>{id:typel}

print-statement:

-==> % ===> PRINT ---y---=> ON ----- L
---> OFF --->

procedure-call:

——>{id:procedurel} T]
> (>{expr} I >) >
Le , <
procedure-heading:
-—> procedure —>{id}—>{formal-parameters}

program-module:

—> program —>{id} > (>{id} >) >
_ [Le—", ¢« J
________________________________ >
-< ; <
-(J
——> {declaration}—>
——> {compound-statement} >
range:
+ —>{constant-expr} [T
+ --=> ., ===->{constant-expr}--->

real-number:

+ ———ge==d V e—epe—— >{hex-digit}---1--- > "XR ======——mmmmmm——— >
+ | D bialial- s T]
.. > {diai
————r:——>{d1gyt} 1 > . L< {digit} T
< .
f<
> E > L >(digit} I >
—> + —)j <
> = —
record-structure:
+ -=-->{id: type}---> (-—-—-7--- I—-->{constant-expr}—-—1 —————— >) mmmmmm———————
: [T ieenstentieer) S|
+ mmm y Cm=mmm—em—————

158 Pascal/VS Reference Manual

ot b

T

record-type:

> record —>{field-list}—> end
L———> packed ——-—->J

repeat-statement:

—> repeat ————~‘T——~>{statement}———T——~> until —>{exprl}
< ;3 <

repatition:

—==>{constant-expr) s e e e e e e

return-statement:

Bt - o 4 Bt

routine-dcl:

T e hending))
r< ; <
——>{directivel > >
<
—-—>{declaration}———>J
——>{compound-statement} > 3

segment-module:

-—=> SEGMENT --->{id}---> ; =--->
B]
F-——>{constant-dcl}-——-->
F-—-—>{type-dcl}-~———--- >
F--=>{var-dcl}--------- >
-—->{def-dcl}-~-==~-==— >
--->{static-dcl}=~===~- >
F-—-~>{value-decl}---—---- >
F-—->{routine-dcl}----- >
Lo e | v o o e o o e P e e e e e e e

set-constructor:

> [>{expr} Y >]
l L———> .. —>{expr} >J J
< , <
>

Syntax Diagrams

159

set-type:

[] > sat of —>{base-scalar-typel}
—> packed —>
simple-expression:
>{terml}
L —> + ———>j >+ >
L—> - —> > - >
F-~=> && -->
> >
<
skip-statement:
===> % =—=> SKIP —---> unsigned-integer -—--------————mmm e
space-type:
--=> space ---> [--->{constant-expr}---> 1 ---> of --->{type}-——--—=-—cwuu-

statement:

———t:——>{1abel}———> P>
~--->{assert-statement}------~-----—rm e b
F—> {assignment-statement} >
-——>{case-statement] >
———> {compound-statement} >
F-—=>{continue-statement}--—----------mmm e >
———> {empty-statement} b
——>{for-statement} >4
——>{goto-statement} >

>{if-statement} >
F-~=>{leave-statement}-——-——=m—-—emm e e - >
——>{procedure-call} >
———>{repeat-statement} >
F=~=>{return-statement}--=--———mmm e >4
-———>{while-statement} >
t—>{with-statement} >

static-dcl:

Lm=m , ————

---> static B I L e e e e
|

160 Pascal/VS Reference Manual

+ + +

—_— > 0 > v >
I l<-——{character}<——~J
tm==> v ---pe-->hex-digit}--—y=--> 'XC ------ >J
< —————————————————
string-type:
-—==> STRING --—I—-~> (--->{constant-exprl}--->) Tl >
___________________________________ >
structured-constant:
---[-—~>{record—structure}—-—I ——— >
--->{array-structure}--->
subrange-scalar-type:
—1;o0>_packed --->
A
>{constant}—> .. ——>{constant-expr} >
L——-> range --->{constant-expr}---> .. --->{constant-expr}--->J
term:
——r1—>{factor} >
> % >
> 7 P
—> div —>
—> mod ——>
Fmm=> 3> =——=>
F——=> << —===>
F--=> || -=--5]
> & >
L<
title-statement:
===> % ===> TITLE ---> any-character-string =—-===-—-——memmm . >
tvpe:
>{id:typel} >
>{enumerated-scalar-type} >
>{subrange-scalar-type) >
>{array-typel} >
>{record-type} >
>{set-typel} >
——>{file-typel >
——>{pointer-type} >
Syntax Diagrams

161

+

tvpe-dcl:

—> type —-—[———>{id}———>
<

unsigned-constant:

—>{typel > 3

>{unsigned-number}

>{string}—mmm @ ™ >

p—-—>{id:constant}—>

——> nil >

unsigned-integer:

>{digit} T
<

unsigned-number:

———T———>(unsigned-integer} >
>{rea1—number}——-——"—-—-——>J

value-assignment:

--->{variable}---> := ——~I-—->{constant-expression}----I -------------------
--->{structured-constant}--->

value-dcl:

-=-=> value -—-I---{value~assignment}—--> it [ttt
oo e e e e e e e et e e e

var-dcl:

we

—> var >{id} > 2 >{typel} >
[o™ 1
<

162 Pascal/VS Reference Manual

variable:

—=>{id}—>

<
> 0 >{expr} >] >
[t I
——> , —=>{id:field} >
> >

variant-part:

—=> case ———T———>{field} > T
>

<

>{range}———T———> I ¢ *-I:j—>{fie1d—list} >)
< ,» < >..l

< ;<

while-statemant:

——> uhile —>{expr}—> do —>{statement}

with-statement:

—> With >{variab1e}-——T———> do —>{statement}
[< , <

Syntax Diagrams

163

TNL SN20-4446 (31 December 81) to SH20-6168-1

APPENDYX D, INDEX YO SYNTAX DIAGHAMS

actual-parameters........... 79

array-structure............. 20 page-statement....... ceeses. 165
arrav=type., ves G2 pointer—type. . ..o nenen. 57
assert-statement............ 84 print-statement........... .. 165
assignmaent-statement........ 85 procedure-call............ .. 96
procedure-heading....... vee. 61
base-scalar-type.......... .. G8 program-module.............. 21
case-statement.......... eee. 86 range. . .c..een... cheeteesre.. GG
check-statement..... ceeesae. 165 real-number..... C et e e 18
compound-statement.......... 88 record-structure............ 20
constant.......... C e e .. 18 record-type...... Ce et e . 4%
constant-decl...... Cersesenes 26 repeat-statement........... . 97
constant-expr.......cocvv. 71 repetition............ vevee. 20
continue-statement..... vee.. 89 return-statement............ 928
cpage-statement..... veeeess. 165 routine-decl....... Ceeeee .. 61
declaration.......... veeeses 21 segment-module.............. 21
def-del........ s ierecsesses. 28 set-constructor............. 81
directive........ovvvinn .. 61 set-type.......... e 48
simple-expression........... 71
empty-statement..... ceeeeee. 90 skip-statement.............. 145
enumerated-scalar-type...... 34 space~type.......c.... eeees. 169
=14 =1 crieeeas 71 statement................... 83
static-del................. . 27
factor..... St e ettt 71 string..... B ¥ -
field...... et e R 1 string-type...........v..... 51
field-list..... tesecrereees. G4 structured-constant..... eeee. 20
file-tvpe......ccvviin eees 50 subrange-scalar-type........ 35
fixed-part....... 1
for-statement............... 91 term. ..o i i e e e eeo 71
formal..... et eeees 61 title-statement............. 145
“formal-paramaters........... 61 type..... . 5 |
function-heading...... cee e 61 type-del......c.iiiiiee... 25
function-call........... vees 19
unsigned-constant........... 18
goto-statement.............. 93 unsigned-integer........... . 18
unsigned-number....... ceeees 18
L« C ettt eeo 13
if-statement................ 94 value-assignement........... 29
include-statement........... 145 value-del..........c.ieve.. 29
index-typea....vever vevnnnn 42 var-del............. seereees 26
variable...... ceesereeceaess 67
label. ... ittt iieiinee., 23 variant-part................ GG
label-dcl................... 23
leave-statement.......... ee. 95 with-statement..... cevesqes. 100
list-statement....... cveeee. 1645 while-statement............. 99
margins-statement........... 145
module....... C et . 21

Appendix D. Index to Syntax Diagrams 165

Actual parameter specifies what is to be
passed to a routine.

Array_type is the structured type that
consists of a fixed number of elements,
each element of the same type.

Assignment compatible is the term used
to indicate whether a value may be
assigned to a variable.

Automatic variable is a variable which
is allocated on entry to a routine and
is deallocated on the subsequant return.
An automatic variable is declared with
the var declaration.

Base scalar type is the name of the type
on which another type is based.

Bit is one binary digit.

Byte is the unit of addresability on the
System/370, its length is eight bits.

Compatible tvpes is the term which is
used to indicate that operations between
values of those types are permited.

Component is the name of a value in a
structured type.

Constant is a value which is either a
literal or an identifier which has been
associated with a value in a const dec-
laration.

Constant expression is an expression
which can be completely evaluated by the
compiler at compile time.

Dynamic_variable is a variable which is
allocated under programmer control.
Explicit allocates and deallocates are
required; the predefined procedures NEW
and DISPOSE are provided for this pur-
pose.

Element is the component of an array.

Entry routine is a procedure or function
which may be invoked from outside the
module in which it is defined. The rou-
tine is called entry in the module in
which is defined. An entry routine may
not be imbedded in another routine; it
must be defined on the outermost level
of a module.

Enumerated scalar tvpe is a scalar that
is defined by enumerating the elements
of the type. Each element is repres-
ented by an identifier.

External routine is a procedure or func-
tion which may be invoked from outside
the module in which the routine is
defined.

Field is the component of a record.

E.0 GLOSSARY

File tvpe is a data type which is the
mechanism to do input and output in
Pascals/Vs.

Fixed part is that part of a record
which exists in all instances of a par-
ticular record type.

Formal parameter is a parameter as
declared on tha routine heading. A
formal parameter is used to specify what
is permitted to be passed to a routine.

Function is a routine, invoked by coding
its name in an expression, which passes
a result back to the invoker through the
routine name.

Identifier is the name of a declared

item.

Index is the selection mechanism applied
to an array to identify an element of
the array.

Intarnal routine is a routine which can
be used only from within the lexical
scope in which it was declared.

Lexical scope identifies the portion of
a module in which a name is known. An
identifier declared in a routine is
known within that routine and within all
nested routines. If a nested routine
declares an item with the same name, the
outer item is not available in the
nested routine.
Module is the compilable wunit in
Pascal/Vvs.

Offset is the selection mechanism of a
space. An element is selected by plac-
ing an integer value in parenthesis.
The origin of a space is based on zero.

Packed record tvpe is a record structure
in which fields are allocated in the
minimum number of bytes. Implementation
defined alignment of data types will not
be preserved in order to pack the
record. Packed records may not be
passed by read/write reference.

Pass by read only reference is the
parameter passing mechanism by which the
address of a variable or temporary is
passed to the called routine. The
called routine is not permitted to modi-
fy the formal parameter. If the actual
parameter is an expression, a temporary
will be created and its address will be
passed to the called routine. A tempo-
rary is also created for fields of
packed records.

Pass by read/write reference is the
parameter passing mechanism by which the
address of a variable is passed to the
called routine. If the called routine
modifies the formal parameter, the cor-

Glossary 167

responding actual parameter is changed.
Only variables may be passed via this
means. Fields of packed records will
not be permitted to be passed in this
Way.

Pass by value is the parameter passing
mechanism by which a copy of the value
of the actual parameter is passed to the
called routine. If the called routine
modi fies the formal parameter, the cor-
responding actual parameter is not
affected.

Pointer type is used to dafine variables
that contain the address of dynamic var-
iables.

Procedure is a routine, invoked by cod-
ing its name as a statement, which does
not pass a result back to tha invoker.

Program_module is the name of the com-
pilable unit which represents the first
unit executed.

Record type is the structured type that
contains a series of fields. Each field
may be of a type different from the
other fields of the record. A field is
selected by the name of the field.

Reserved word is an identifier whose use
is restricted by the Pascal/VS compiler.

Routine is a unit of a Pascals/VS program
that may be called. The tuwo type of
routines are: procedures and functions.

Scalar type defines a variable that may
contain a single value at execution.

Segment module is a compilable unit in
Pascals/VS that is used to contain entry
routines.

Set type is used to define a variable
that represents all combinations of ele-
ments of some scalar tvpe.

168 Pascals/V5 Reference Manual

Space tvpe is used to define a variable
whose components may be positioned at
any byte in the total space of the vari-
able.

Statement is the executable unit in a
Pascals/V5 program.

String represents an ordered list of
characters whose size may vary at exe-
cution time. There is a maximum size
for every string. :

String constant is a string whose value
is fixed by the compiler.

Structured type is any one of several
data type mechanisms that defines vari-
ables that have multiple values. Each
value is referred to generally as a com-
ponent.

Subrange scalar tvpe is used to define a
variable whose value is restricted to
some subset of values of a base scalar
type.

Tag _field is the field of a record which
defines the structure of the variant
part.

Tvpe defines the permissible values a
variable may assume.

Tyvpe definition is a specification of a
data type. The specification may appear
in a type declaration or in the declara-
tion of a variable.

Tvpe _identifier is the name given to a
declared type.

Variant part is that portion of a record
which may vary from one instance of the
record to another. The variant portion
consists of a series of variants that
may share the same physical storage.

Special Characters

<50perator 36, 37, 39, 40, 41, 52, 54,
5

<< operator on INTEGERs 36, 78
<> operator 36: 37' 39p 40; 41; 48) 52,
54, 55
<= operator 36; 37, 39) 40} 41; 48; 52,
54, 55
+ operator 36, 40, 41, 48

operator 36, 39

operator 52

& operator 36, 39
&& operator 36, 39, 48
* operator 36, 40, 41, 48
operator 36, 39, 48
operator 36, 40, 41, 48
operator 36, 40, 41
statements 145

CHECK 146

CPAGE 146

INCLUDE 146

LIST 146

PAGE 146

PRINT 146

SKIP 146

TITLE 146
> operator 36, 37, 40, 41
> operator 39, 52, 54, 55
»>> operator on INTEGERs 36, 78
>= operator 36, 37, 39, 40, 41, 48, 52,
54, 55
= operator 36, 37, 39, 40, 41, 48, 52,
54, 55

NN 11

A

ABS function 36, 37, 40, 41, 131
adding operators 74

ALFA oparators 54

ALFA predefined type 54

ALPHA operators 55

ALPHA predefined type 55

and operator on INTEGERs 78
ARCTAN function 40, 41, 133
array referencing 67

array structured constants 20
array subscripting 42

array type 42

assert statement 8¢

assignment of compatible types 32
assignment of function value 85
assignment statement 85

binary integer constants 18
BOOLEAN expressions 77
BOOLEAN operators 39
boolean predefined type 39

c

case statement 86

CHAR operators 37

char predefined type 38

CHECK compiler directive 146
CHR function 36, 125

CLOCK function 1643

CLOSE procedure 107

COLS function 116

comments 17

COMMON (FORTRAN) 28
compatible types 32

compile time initialization 29
compound statement 88
COMPRESS function 52, 139
conformant STRING parameters 62
const declaration 264

constant declaration 24
constant expression 71, 76
constant expressions 18
constants 18

continue statement 89
conversions 31

conversions on a string 52, 53
C0S function 40, 41, 132
CPAGE compiler directive 146

D

data alignement 59

data storage requriements 59
DATETIME procedure 143
declaration 21, 23
declaration order 22

def variable declaration 28
DELETE function 52, 137
directives 61

DISPOSE procedure 57, 120
div operator 36

div operator defined 37
downto in the for statement 91
dynamic variables 57, 68

E

EBCDIC 38

empty statement 90

enumerated scalar 34

EOF function 109

EOLN function 115

example of
array declarations 62
array indexing 43
assert statement 84
assignment statement 85
BOOLEAN expressions 77
case statement 86
compound statement 88
COMPRESS function 139
conformant strings 63
const declaration 24
const parameter 65

Index 169

constant expressions 76 EXTERNAL directive 61
constants 19 EXTERNAL routines 63
continue statement 89 external variable 28
def declaration 28
DELETE function 137
enumerated scalar 34
EOF procedure 109 F
expressions 73
EXTERNAL function 63

fields in a record 68 factor 71

file decalarations 50 field 44, 46

for statement 92 field list 64

function 79 field referencing 68
function returning a record 65 file referencing 68

goto statement 93 file type 50

HBOUND function 123 fixed part of a record &4, 45
HIGHEST function 122 FLOAT function 36, 126

if statement 94 for statement 91

INDEX function 139 formal parameter 62
initializing an array 29 formal parameter list 61, 62
label declaration 23 FORTRAN directive 61

LBOUND function 123 FORTRAN routines 63, 64
leave statement 95 FORWARD directive 61

logical expressions 78 FORWARD routines 63

LOWEST function 122 function calls 79

LTRIM function 138 function declarartion 61, 62
MARK and RELEASE 118 function heading 61

nested comments 17 function parameters 62

NEW procedure 119, 120 function results 65

offsets in a record 647 functions in constant expressions 76

otherwise in a case statement 87
procedure invocations 96
procedures and functions 65
program module 22 G
READ procedure 109, 110, 111
READSTR procedure 140
record declarations 45 GET procedure 107
recursive function 65 goto statement 93
ref declaration 28
repeat statement 97
ROUND function 127
scalar function 126 H
SEGMENT module 22
set decalaration 68

space type 149 HALT procedure 1642

static declaration 27 HBOUND function 52, 123
structured constants 20 heap 57

subrange scalar 35 hexadecimal integer constants 18
subscripting an array 68 hexadecimal real constants 18
SUBSTR function 137 hexadecimal string constants 18
TOKEN procedure 140 HIGHEST function 36, 37, 39, 122

TRIM function 138
TRUNC function 127
type compatibility 33
type declaration 25 I
UPDATE procedure 106
using a file 69

using pointers 68 identifiers 13

using STRINGPTR 58 if statement 9%

using STRINGs 51 implicit conversions 31

using variables 67 in operator 68

value declaration 29 INCLUDE compiler directive 146

var declaration 26 INDEX function 52, 139

‘variant record ¢5, 46 initialization 29

while statement 99 initializing the Pascal runtime envi-

with statement 100, 101 ronment 66

WRITE procedure 112, 113 INTEGER operators 36

WRITESTR procedure 141 INTEGER predefined type 36
execution time string allocation 58 INTEGER storage mapping 36, 37
EXP function 40, 41, 133 interlanguage communication 6%
expression 71 internal routines 63

170 Pascal/Vs Reference Marual

label declaration 23

label format 23

LBOUND function 52, 123

leave statement 95

LENGTH function 51, 52, 136
lexical level 13

lexical scope 13

LIST compiler directive 146

LN function 40, 641, 134

logical expressions on INTEGERs 78
logical operations on integers 37
LOWEST function 36, 37, 39, 122
LTRIM function 52, 138

M

MAIN directive 61

MAIN routines 63, 64

MARK procedure 57, 118

MAX function 36, 37, 39, 40, 41, 129
MAXINT 36

MAXLENGTH function 51, 52, 136

MIN function 36, 37, 39, 40, 41, 129
MININT 36

mod operator 36

mod operator defined 37

module 21

module, structure 21
multi-dimensional array 62
multi-dimensional arrays 67
multiplying operators 74

mutually recursive routines 63

NEW procedure 57, 119
not operator 74
not operator on INTEGERs 78

0DD function 36, 37, 131
offset quailfication 46
operations on
ALFA 54
ALPHA 55
BOOLEAN 39
CHAR 38
INTEGER 36
REAL 40
set 48
SHORTREAL 41
STRING 52
operator precedence 71
operators 74
or operator on INTEGERs 78
ORD function 37, 39, 125
order of avaluation of BOOLEAN expres-
sions 77
order of evaluation of expressions 71

p

PACK procedure 121

packed array 42

packed record 46

packed set 48

packed subrange 35

PAGE compiler directive 146
PAGE procedure 115
parameter 62

parameters 61

parenthesized expression 71
PARMS function 16464

pass by const parameters ¢2
Pass by read-only reference
parameters 62

Pass by reference parameters 62
Pass by value parameters 62
pass by var parameters 62
PDSIN procedure 105

PDSOUT procedure 106
pointer referencing 68
pointer typa 57

PRED function 36, 37, 130
PRINT compiler directive 146
procedure call statement 96
Procedure declaration 61
procedure heading 61, 62
Procedure parameters 62
program module 21

PUT procedura 108

RANDOM function 135
READ procedure 109, 111
Reading
CHAR Data 110
INTEGER Data 110
packed array of CHAR Data 110
REAL (SHORTREAL) Data 110
STRING Data 110
Variables with a Length 110
READLN procedure 109
READSTR procedure 52, 140
real constants 18
REAL operators 40
real predefined type 40
record structured constants 290
record type 44
REENTRANT directive 61
REENTRANT routines 63, 64
ref variable declaration 28
relational operators 74
RELEASE procedure 57, 118
repeat statement 97
reserved words 15
RESET procedure 103
restrictions on a goto statement 93
restrictions on file typa 50
restrictions on routines 63
restrictions using the MAIN
directive 64
restrictions using the REENTRANT direc~
tive 64
RETCODE procedure 144
return statement 98
revision codes iv
REWRITE procedure 104
ROUND function 40, 41, 127

Indax 171

61, 62
62

routine declarartion
routine parameters

same type 32

scalar conversion functions
scope 13, 4%

SEEK procedure 108

SEGMENT module 21
seprate compilation
set operators 48
set type 48 :
short circuiting of BOOLEAN
expressions
SHORTREAL operators 4l
shortreal predefined type
simple expression 71

63

41
SIN function 40, 41, 132
SKIP compiler directive

14
special symbols 16
statements 83

SIZEOF function 36, 37, 39,
52, 54, 55, 124

146
space declaration 149
space element referencing
SQR function 36, 40, 41, 135
SQRT function 40, 41, 134
static variable declaration
storage mapping for a set 48

80, 126

49,

9

27

storage mapping of a record 46

STR function
STRING 58

37, 54, 55, 128

string constants 18
STRING operators 52
STRING parameters 62
string type 51

strings 31

structured constants 20

subrange scalar 35
SUBSTR function 52, 137
sycc function 36, 37, 130

T

tag field 45

term 71

TERMIN procedure 104
TERMOUT procedure 105
TEXT predefined type 56

TITLE compiler directive 146

172

PascalsVS Reference Manual

41,

48,

to in the for statement 91
TOKEN procedure 140
TRACE procedure 142
TRIM function 52, 138
TRUNC function 40, 41,
type compatibility 31
type conversions 31

127

type declaration 25

type identifier 25

type matching 32

types 31

types of routines 63
)

UNPACK procedure 121

unsigned-integer constants
UPDATE procedure 106
user definfed types 31

v

value declaration 29
var declaration 26
variable declaration
variable identifier
variables 67

26
26

18

variant part of a record %%, 45

W

while statement 99
with statement 100
WRITE procedure 112, 114
WRITELN procedure 112
WRITESTR procedure 52, 141
Writing

BOOLEAN Data 113

CHAR Data 113

INTEGER Data 113

Packed Array of CHAR Data
REAL Data 113
STRING Data 113

114

+ o+ e

+

+ + +

arrays or records with structured
fields.
type
COMPLEX = record
RE,IM: REAL
end;
VECTOR = arrayll..7] of INTEGER;
CARRAY = arravio0..9] of COMPLEX;
TETRA = arrayll..3,1..2,1..4]
of INTEGER;
const
{ Structured Constants }
THREEFOUR = COMPLEX(3.0,4.0);
VECTOR_1 = VECTOR(7,0:5,1);
VECTOR_2 = VECTOR(2,3,,4);
ZEROTETRA =
TETRAC(
C (0:6):2),
C (0:4),(0:4)),
¢ ¢(0,0,0,0),(0,0,0,0) >);

{the following two declarations
are equivalent
VECTOR_3 = CARRAY(

COMPLEX(1.0,0.0),
COMPLEX(1.0,1.0):8,
COMPLEX(0.0,1.0));
VECTOR_4 = CARRAY(
(1.0,0.0),
(1.0,1.0):8,
(0.0,1.0));

Examples of Structured Constants

TNL SN20-4446 (31 December 81) to SH20-6168-1

ybe
FORM = (FCHAR,FINTEGER,FREAL,

FSTRING);
KONST =
record
SIZE: INTEGER;
case F: FORM of

FCHAR: (C: CHAR);
FINTEGER: (I: INTEGER);
FREAL: (R: REAL):;
FSTRING: (
case BOOLEAN of
TRUE: (

LEN: packed 0..32767;
A ¢ ALPHA);
: FALSE:(S: STRING(161));
end

const

A = KONST(1,FCHAR,'A");
PI = KONST(8,FREAL,3.14159);
BLANK =

KONST(1,FSTRING.FALSE," ');
STARS =
KONST(4,FSTRING, TRUE, G, "%%%xx"');

Structured constants with
variant record fields

The Base Vocabulary 20.1

TNL SN20-4446 (31 December 81) to SH20-6168-1

20,@ Pascal/VS Reference Manual

Technical Newsletter

PASCAL/VS

Language Reference Manual

Program Number: 5796-PNQ

This Newsletter No.
Date

Base Publication No.
File No.

Prerequisite Newsletters

SN20-4446
31 December 1981

SH20-6168-1

None

This Technical Newsletter provides replacement pages for the subject publication.
Pages to be replaced are listed below.

Note: File this cover page at the back of the manual to provide a record of changes.

Cover
v/vi
11/12
19/20
20.1/20.2
27/28
29/30
35-40
45/46
51/52
63/64
67/68
73/74
75/76
89/90
95/96
113/114
117/118
118.1/118.2
125/126
135/136
137/138
139-142
145/146
146.1/146.2
157/158
165/166

IBM Corporation, Marketing Publications, Dept. 825, 1133 Westchester Ave., White Plains, N.Y. 10604

Printed in U.S.A.

PROGRAM SERVICES

Central Service will be provided until otherwise notified. Users will be given a minimum of
six months notice prior to the discontinuance of Central Service.

During the Central Service period, IBM through the program sponsor(s) will, without addi-
tional charge, respond to an error in the current unaltered release of the program by issuing
known error correction information to the customer reporting the problem and/or issuing
corrected code or notice of availability of corrected code. However, IBM does not guarantee
service results or represent or warrant that all errors will be corrected.

Any on-site program service or assistance will be provided at a charge.
WARRANTY

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN °AS IS’ BASIS WITHOUT WAR-
RANTY OF ANY KIND EITHER EXPRESS OR IMPLIED.

Central Service Location: IBM Corporation
555 Bailey Avenue
P.0O. Box 50020
San Jose, CA. 95150
Attention: Mr. Larry B. Weber
Telephone: (408) 463-3159
Tieline: 8-543-3159

IBM Corporation

DPD, Western Region

3424 Wilshire Boulevard

Los Angeles, California 90010-
Attention: Mr. Keith J, Warltier
Telephone: (213) 7364645
Tieline: 8-2854645

Second Edition (April 1981)

This is the second edition of SH20-6168, a publication that applies to release 2.0
of the Pascal/VS Compiler (IUP Program Number 5796-PNQ).

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers’ comments has been provided at the back of this publication. If
the form has been removed, address comments to: The Central Service Location.
IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981

==:7 /Technical Newsletter This Newsletter No. SN20-4451

Date 19 Feb 82

Base Publication No. SH?20-6168-1
File No.

Prerequisite Newsletters SN20-4446

PASCAL/VS
Language Reference Manual

Program Number: 5796-PNQ

This Technical Newsletter provides replacement pages for the subject publication.
Pages to be replaced are listed below.

Cover - Inside Cover

Note: File this cover page at the back of the manual to provide a record of changes.

IBM Corporation, Marketing Publications, Dept. 825, 1133 Westchester Ave., White Plains, N.Y. 10604

Printed in U.S.A.

ting equipment.

Staples can cause problems with automated mail sor

Note:

o seal this form.

Please use pressure sensitive or other gummed tape t

READER'’S

Pascal/VS: 5796-PNQ COMMENT
Language Reference Manual FORM
SH20-6168-1

You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you,

Your comments will be sent to the author’s department for whatever review and action, if any, is
deemed appropriate. Comments may be written in your own language; use of English is not required.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity =~ Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SH20-6168-1

Reader’'s Comment Form

Fold and tape

..

Please Do Not Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

Fold and tape

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 68Y

P.O. Box 2750

225 John W. Carpenter Freeway, East
Irving, Texas 75062

...

Please Do Not Staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE

UNITED STATES

1-8919-0ZHS 'V'S'N Ul palulld [enuep adudlssey abenbue SA/1eosed

———— e — — — — = —2u"] BUOJY P04 10 IND = — — ——

SH20-6168-1

Pascal/VS Language Reference Manual Printed in U.S.A. SH20-6168-1

&

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118.0
	118.1
	118.2
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146.00
	146.1
	146.2
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	20.1
	20.2
	_1
	_2
	_3
	replyA
	replyB
	xBack

